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Identifying nonlinear structures in a time series, acquired from real world systems, is essential
to characterize the dynamics of the system under study. A single time series alone might be avail-
able in most experimental situations. In addition to this, conventional techniques such as power
spectral analysis might not be sufficient to characterize a time series if it is acquired from a com-
plex system such as a thermo-acoustic system. In this study, we analyze the unsteady pressure
signal acquired from a turbulent combustor with bluff-body and swirler as flame holding devices.
The fractal features in the unsteady pressure signal are identified using the singularity spectrum.
Further, we employ surrogate methods, with translational error and permutation entropy as dis-
criminating statistics, to test for determinism visible in the observed time series. In addition to
this, permutation spectrum test could prove to be a robust technique to characterize the dynamical
nature of the pressure time series acquired from experiments. Further, measures such as correlation
dimension and correlation entropy are adopted to qualitatively detect noise contamination in the
pressure measurements acquired during the state of combustion noise. These ensemble of measures
is necessary to identify the features of a time series acquired from a system as complex as a turbulent
combustor. Using these measures, we show that the pressure fluctuations during combustion noise
has the features of a high dimensional chaotic data contaminated with white and colored noise.

I. INTRODUCTION

Thermo-acoustic instability is a dynamic phenomenon
marked by the presence of large amplitude, self-excited
pressure oscillations established in a confinement as a re-
sult of complex combustion acoustic interactions [1–3].
Such oscillations often lead to the failure of combustion
systems due to excessive vibration of the hardware [4]
and increased heat transfer to the walls of the cham-
ber [5]. In many turbulent combustion systems, these
thermo-acoustic oscillations are preceded by an intermit-
tent regime. Further, prior to intermittency, there ex-
ists a state that is dictated by low amplitude aperiodic
fluctuations in pressure and velocity measurements. The
transition of the system from this stable state, the so
called combustion noise, to thermo-acoustic instability,
has become the focus of studies on combustion dynamics
in recent years [6–13].
There have been successful attempts to predict the

transition to instability that is observed in a thermo-
acoustic system. Certain features inherent to combus-
tion noise were identified in order to devise predictive
measures such as Hurst exponent and translational error
[9, 11]. These measures are sensitive to the changes in the
system dynamics during the transition from aperiodic to
periodic pressure oscillations. However, understanding
this transition would require identifying the determinis-
tic or stochastic nature of these aperiodic pressure fluc-
tuations acquired during the state of combustion noise.
Understanding the nature of combustion noise is impor-
tant, so as to model and study the transition in detail. It
is worth emphasizing that these transitions are observed

∗ Corresponding author.

Email: tonyjohntony1994@gmail.com

not just in thermo-acoustic systems, but also in aeroe-
lastic [14, 15] and aeroacoustic systems [16]. Therefore,
understanding the physics of this transition will be of in-
terest to a wide range of fields. In order to accomplish
this, the dynamics of the base state of the system must
be clearly understood. Further, models developed to de-
scribe these transitions must capture the features of the
base state accurately.

In literature, a stochastic description is generally
adopted to model the sources of combustion noise [17].
In the traditional approach, the effects of turbulence are
often modelled using additive noise sources, while analyz-
ing thermo-acoustic instability [18, 19]. Any approach to
understand the combustion dynamics basically reduces
the problem to an acoustic problem, once the description
of hydrodynamic processes is bypassed. The relevance of
such analyses, where the effects of turbulence are mod-
eled using stochastic sources, depends on the problem
at hand. Moreover, it might be insufficient to capture
the dynamics of combustion noise, if it occurs that the
pressure measurements indeed have a deterministic sig-
nature.

Recent studies indicate that the pressure measure-
ments acquired during the stable operation in turbulent
combustors display multifractal features [11] and its dy-
namics has been attributed to deterministic chaos [8]. In
these studies, measures such as Kaplan-Glass test and 0-
1 test along with randomly shuffled surrogate test were
employed to identify the dynamic nature of combustion
noise. A simple surrogate test such as random shuffling,
that eliminates temporal correlations in the signal, does
not provide conclusive proof for determinism in the time
series. However, the fact that those studies were focused
on devising appropriate precursors to instability must be
acknowledged.

Gotoda et al. (2011), in an attempt to identify the
nature of pressure fluctuations near lean blowout in a
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lean-premixed combustor, adopted methods of nonlinear
time series analysis to interpret such fluctuations from a
stochastic viewpoint. They illustrated the need to adopt
sophisticated nonlinear techniques to extract the degree
of determinism visible in the observed time series. Fur-
ther, they observed the transition of the system from
stochastic fluctuations to periodic oscillations through
low dimensional chaos, with increases in equivalence ra-
tio. Translational error was used as a measure to charac-
terize the observed time series as stochastic and chaotic
in different parameter regimes. It must be noted that,
they employed appropriate surrogate tests to support this
analysis. In a subsequent paper, Gotoda et al. (2012)
adopted the permutation entropy in combination with
surrogate data methods to discuss the possible existence
of chaotic fluctuations in the pressure measurements. In
short, it is clear from earlier studies that identifying the
dynamic nature of an experimental time series is not triv-
ially obvious.

A basic understanding of the physical processes in-
volved in the dynamic behavior of the system is suffi-
cient to choose appropriate tools for analyzing the ac-
quired time series. Power spectral methods, that detect
linear correlations in the signal, are often insufficient to
capture the intricacies of the measured time series. The
framework of nonlinear dynamics, inspired from the re-
cent advances in the field, well serves the purpose of this
analysis. A thermoacoustic system can be viewed as a
complex dynamical system owing to the nonlinear pro-
cesses and time lags involved in the temporal evolution
of the system. The presence of time delays in the physi-
cal system makes it a high dimensional dynamical system
[20]. Recent studies on thermoacoustic phenomenon from
the viewpoint of nonlinear dynamics reveal the existence
of different dynamical states such as chaos [8, 21], inter-
mittent bursts [9, 10, 22], quasiperiodic oscillations [22]
and so on.

In principle, to represent a complex system, all the
state variables that govern the evolution of the system
must be known. However, in an experimental situation,
only a subset of these variables can actually be measured.
Moreover, the objective in practical situations is to iden-
tify the processes involved in the dynamics of the system
from the available data sets, which falls under the cate-
gory of an inverse problem [23]. The first step towards
identifying the underlying process is to correctly charac-
terize the time series that is generated out of it. In this
analysis, a scalar time series, the acoustic pressure p′(t) is
often the only data available from experiments. The time
series of unsteady pressure acquired during combustion
noise appear noisy. However, the temporal correlations
identified in the measured signal necessarily mean that
the data cannot be disregarded as mere random fluctua-
tions [11]. These fluctuations can be due to the influence
of pseudo periodic elements, chaos, linear or nonlinear
correlations, dynamic or observational noise [23]. How-
ever, it is difficult to identify the nature of an experimen-
tal time series as it is highly likely to be contaminated

with noise. The difficulty is more pronounced when the
time series measurements are acquired from a complex
system such as a thermoacoustic system [24]. There can
be cases where an experimental time series is contami-
nated by dynamic as well as observational noises. Taking
into account of such complexities, a conclusive approach
must be adopted to accurately determine the dynamic
nature of the pressure measurements. A complete anal-
ysis to recognize the dynamic nature of these aperiodic
fluctuations could aid the studies on transitions to an-
other stable state.

In this study, the time series is analyzed under the
assumption that it is generated out of either stochas-
tic or purely deterministic dynamics. Tests that can de-
tect nonlinearity and fractal features in a signal must be
performed to conclusively diagnose chaotic elements, if
present, in the time series [25]. Measures such as gen-
eralized Hurst exponents and singularity spectrum are
used to identify the scaling behavior of the pressure sig-
nal obtained from experiments. However, the presence
of fractal features, though necessary, is not sufficient to
conclude that the observed time series is chaotic. This
is because; correlated noise might as well possess scaling
behavior similar to that of a chaotic signal [26]. There-
fore, measures that can detect nonlinearity in a time se-
ries must be adopted, in addition to fractal measures, for
quantifying deterministic chaos that is manifested in the
time series. Direct tests, such as Lyapunov exponent and
correlation dimension, are normally adopted to claim the
evidence of chaos in a time series. A sensitive dependence
on initial conditions is the standard basis to detect the
chaotic nature in deterministic dynamical systems [27].
Lyapunov exponent is a measure that quantifies the expo-
nential divergence of nearby trajectories of an attractor
in the state space. A system with one or more positive
Lyapunov exponents is defined to be chaotic. Oseledecs
theorem [28], applicable to continuous and differentiable
equations, is used to develop algorithms for calculating
Lyapunov exponents [29]. However, this approach may
not work for experimental data contaminated with noise
and the qualitative behavior of such a signal is not merely
dictated by the sign of Lyapunov exponents [27, 29].

Standard methods such as Grassberger-Procaccia
(GP) algorithm, used to find correlation dimension, can
recognize chaotic time series; however, the procedure re-
quires the identification of the scaling region in the cor-
relation sum by visual inspection, in order to correctly
estimate the dimension [30]. In practical data contam-
inated with dynamic or observational noise, identifying
the appropriate scaling region in phase space becomes
more difficult [30]. In the case of a short time series, the
value for correlation dimension obtained using the GP
algorithm might not be the actual dimension of the at-
tractor. It would rather be the result of using a short
time series for the analysis [31]. The inherent limitations
posed by these techniques will be exposed while analyz-
ing noisy data.

Direct tests are therefore, not sufficient to claim evi-
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dence of determinism in a time series acquired from ex-
periments [32]. The other alternative, surrogate tests, is
merely an extension of direct tests; however, it is basically
a statistical test. A null hypothesis q is formulated for a
given data set and its validity is examined through this
statistical test [23]. A null hypothesis is basically a claim
made on the origin of the data sets under analysis. First,
we generate surrogate data sets consistent with the null
hypothesis that one has to test for. Then, we compute a
suitable nonlinear statistic, also known as discriminating
statistic (T ), for the original data set and for the ensem-
ble of surrogate data sets [23]. If the computed values
of statistic for the original data and set of surrogates are
significantly different, one can safely argue that the data
were not generated by a process described by the null hy-
pothesis. However, the null hypothesis cannot be falsified
with absolute certainty. Instead, rejection is carried out
in a probabilistic sense; i.e., at a certain confidence level,
determined by the number of surrogate data sets, gen-
erated according to any particular hypothesis [23]. The
distribution of the statistic, T (for the surrogate data
sets) obtained according to the the null hypothesis, can
be estimated. Then, the rejection region is chosen at the
tail of the distribution based on a given significance level
t [33]. The significance level t is given by,

t =
|T − 〈T 〉surr|

σsurr

(1)

where T is the statistic, 〈T 〉surr is the mean of the statis-
tic evaluated for the surrogate data sets and σsurr is
the standard deviation for the surrogates [30]. In short,
surrogate tests are necessary to assess the confidence
level associated with any of the estimates for the met-
rics adopted. The most commonly used techniques to
generate surrogate data for statistical analysis of nonlin-
ear processes include random shuffling of original series,
Fourier transformed (FT) surrogates and amplitude ad-
justed Fourier transformed (AAFT) surrogates.
Random shuffling or random permutation (RP) is the

simplest way of generating surrogate data [23]. The el-
ements of the original data set are randomly rearranged
so as to destroy any linear correlations present, if any, in
the data while preserving its distribution. This method
is consistent with the null hypothesis that the data is
generated from an uncorrelated random process. Rejec-
tion of this hypothesis means that the signal possesses
temporal correlations. Testing the time series against
this hypothesis must be a trivial exercise in most cases
as the time series data obtained from experiments might
possess temporal correlations. To deal with correlated
time series data, an algorithm was developed by Theiler
et al. (1992) for testing the null hypothesis of a linear
stochastic process [34]. Rejection of this hypothesis nec-
essarily means that the data being tested do not stem
from a linear Gaussian process. To implement this sur-
rogate test, the mean and covariance of the surrogate
data sets should match with that of the original data. In
practice, the algorithms for FT surrogate maintains the

amplitude spectrum of the time series while randomizing
the Fourier phases [34]. The underlying phase can be
chosen randomly from a uniform distribution on [0, 2π].
This is because; the Fourier phases of a linear Gaussian
process do not contain any useful information, as the fea-
tures of such a process can be completely determined by
their mean and autocovariance function [33]. Further,
it is known by the Wiener-Khinchin theorem, that the
autocovariance function has a one to one correspondence
with the power spectrum via the Fourier transformation
[35].

In practical cases, the time series acquired from exper-
iments might be contaminated with observational noise
as well as dynamic noise. The probability distribution of
the data originating from a linear Gaussian process might
deviate from a normal distribution if the data is contam-
inated with observational noise. Thus, the nonlinearity
in the signal might be an artifact of the measurement
system. The AAFT surrogate test was hence developed
so as resolve the limitations that arise when the original
data do not follow a Gaussian probability distribution
[36]. This test is based on the null hypothesis that the
original data is derived from a linear Gaussian process,
modified by a nonlinear measurement function [34]. The
steps involved in generating an AAFT surrogate data set
are as follows. Consider xn, n = 1, 2, ·N · ·, N to be the
observed time series. According to the null hypothesis,
xn=h(sn), where sn is a realization of a linear Gaus-
sian process and h is a nonlinear measurement function.
Methods that implement AAFT try to invert the mea-
surement function by changing the distribution of the
original data to obtain a Gaussian distribution [33]. This
is performed by assigning a rank to the elements in the
time series by comparing the relative values of the ele-
ments. A white noise data (Gaussian) of the same length
as the original data is rearranged to obtain the same rank
structure as the original time series. A phase randomized
surrogate of the rearranged data (Gaussian) is then con-
structed. Further, the transformed data is reordered in
such a way that the original data and the resultant sur-
rogate have the same rank order [34]. The results from
this test turn out to be accurate, when the number of
data points in the signal is large and the measurement
function is almost an identity function [33]. Rejection
of the null hypothesis of AAFT, FT and random shuf-
fle is an indication of the presence of nonlinearity in the
measured signal.

The successful application of statistical hypothesis
testing relies on the choice of the discriminating statis-
tic. The statistics used in this study require reconstruct-
ing the phase space from the measured time series data
using Takens′ embedding theorem. Techniques are avail-
able to estimate the optimum delay (τ) and embedding
dimension (D), which are necessary to accurately recon-
struct the state space [37]. Through delay embedding,
the scalar time series is converted into a set of delayed
vectors, which helps in visualizing the system dynamics
at different conditions. An important statistic that can
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possibly distinguish the original data from the surrogate
data sets will be the translational error, if the time series
under analysis has deterministic features. Translational
error was successfully employed as a tool to characterize
the combustion dynamics before lean blowout in a gas
turbine model combustor [9]. This method, proposed by
Wayland et al. (1993), is used to obtain a quantitative
measure of determinism in a time series. It is based on
the idea that the neighboring trajectories in the state
space align in similar directions if the time series has de-
terministic features [38]. For a measured time series data
of pressure fluctuations, p′(t), the set of delayed vectors
are given by,

P (t) = {p′(t), p′(t+ τ), ··, p′(t+ (D − 1)τ)} (2)

where P (t) is the phase space vector at any time instant
t and the elements of this vector represent coordinates
of the corresponding vector in the D- dimensional phase
space. The elements of this delayed vector can as well
be viewed as the state variables of the dynamical system
under study.
Let P (ti) be an arbitrary vector in the phase space and

P (tj) (j=1,2, · ·, N) be N nearest neighbors of the chosen
vector. Let P (tj + T ) represent the delayed vectors after
T time steps. The time interval T was suitably chosen
to be the optimal time delay as we observed maximum
determinism in the phase space at this choice of T .
An approximate tangent vector at time tj is given by

v(tj),

v(tj) = P (tj + T )− P (tj) (3)

〈v〉 denotes the average of the tangent vectors v (tj) for
j=1,2, · ·, N

〈v〉 =
1

N + 1

N∑

j=0

v(tj) (4)

The translational error, Etrans, can be defined as

Etrans =
1

N + 1

N∑

j=0

‖v(tj)− 〈v〉‖2

‖〈v〉‖2
(5)

The value of translation error is approximately 1.0 for
uncorrelated noise and close to zero for a periodic sig-
nal. The estimated value of Etrans will be close to zero if
the degree of determinism visible in a time series is high.
However, deterministic features can be considered as sig-
nificant when Etrans for a signal is less than 0.1 [39]. It
must be noted that there can be cases where the temporal
correlations in a signal can be mistaken for determinism
by the algorithms adopted for the analysis [40]. Hence,
a single test alone might not be sufficient to detect chaos
in the real world experimental data [30]. Further, the
use of multiple measures of nonlinearity could prove use-
ful to detect contamination with white or colored noise
in a signal. Harikrishnan et al. (2009) illustrated an ap-
proach to detect white and colored noise in a time series

through the combined use of correlation dimension and
correlation entropy. The procedure to find correlation
dimension and entropy follows the GP algorithm. The
delayed vectors are constructed as an initial step to esti-
mate the dimension. Then, the average number of points
within a distance R from an arbitrary phase space vector,
P (ti), is given by

ri(R) = lim
n→∞

1

N

N∑

j=1,j 6=i

H(R− |P (ti)− P (tj)|) (6)

where N is the total number of delayed vectors con-
structed and H is the Heaviside step function. The cor-
relation function, C(R), is obtained by averaging ri(R)
over M selected delayed vectors.

C(R) =
1

M

M∑

i=1

ri(R) (7)

Finally, the correlation dimension, D2, is defined as

D2 = lim
R→0

d logC(R)

d log(R)
(8)

The limitations of using GP algorithm to analyze a
noisy time series were detailed before. To account for
this, a non-subjective method, as described in Harikrish-
nan et al. (2006) was adopted to fix the scaling region,
in order to correctly estimate the correlation dimension
[41].
Further, correlation entropy, when employed in com-

bination with AAFT surrogate, can detect colored noise
embedded in a time series. The estimation of correlation
entropy follows the same procedure as that for correlation
dimension. Correlation entropy, K2, is defined as

K2δt = lim
R→0

lim
D→∞

lim
M→∞

(− logC(R)/D) (9)

where δt is the time step used to generate the time series
if the set of governing equations are known. In an exper-
imental situation, δt can be chosen as the sampling time.
A linear part in the logC(R) vs log(R) plot must be
identified to estimate the correlation entropy [42]. This
scaling region is computed algorithmically as described
in Harikrishnan et al. (2008). Another suitable statis-
tic that serves the purpose of this study is permutation
entropy, which measures the degree of randomness ob-
served in a time series. This measure relies on features
that are based on ordinal pattern statistics. In this sym-
bolic approach, a time series is partitioned into subsets
of length D (embedding dimension), with its elements
being separated by a delay τ . Partitioning the time se-
ries in this manner is basically the same as phase space
reconstruction. The possible permutations (D! permu-
tations) for a sequence of length D are indexed as i,
following a standard procedure [43]. The D! permu-
tations are the possible ordinal patterns associated with
this set of lengthD. Consider a sequence of lengthD, say
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{p′(t), p′(t+ τ), p′(t+2τ), · · ·, p′(t+(D− 1)τ)} obtained
by partitioning the time series (non-consecutive points).
The relative values of the elements are compared to find
the order in which the elements appear in the set. The
elements are then replaced by their ranks such that the
elements with the smallest and largest value are assigned
the rank ′1′ and ′D′ respectively. This definite arrange-
ment of elements can be assigned an index, called as the
ordinal pattern index, following the procedure detailed in
Parlitz et al. (2012). More details about ordinal patterns
and the possible patterns associated with D = 4 and 5
can also be found in Parlitz et al. (2012). Permutation
entropy, hp, is defined as

hp = −

∑D!

i=1
pi log2 pi

log2 D!
(10)

Here, pi represents the relative frequency of the ordinal
pattern that is indexed as i. The estimates of hp are then
tested for their statistical significance using the RP, FT
and AAFT surrogates.
Symbolic visual test is another simple and robust tech-

nique that can recognize regular, chaotic, stochastic and
hyper-chaotic dynamics [44]. The permutation spectrum
test (PST), as it is commonly called, is rather an ex-
tension of the Bandt and Pompe scheme [45] used to
estimate the permutation entropy. Ordinal patterns of
length D = 4, i.e., 24 possible patterns, are typically
used, as it is computationally easier. The relative fre-
quency of each ordinal pattern is used to derive a spec-
trum of ordinal patterns. The patterns are indexed ac-
cording to the same convention as mentioned before. The
relative frequency of certain patterns will be really high
for a time series displaying regular dynamics. Thus, the
specific patterns observed in the permutation spectra can
be an indication of the nature of the time series under
analysis. The presence of a large number of certain pat-
terns in the time series indicates that there are many
vectors pointing in similar direction in the reconstructed
state space. Further, the ordinal patterns that are absent
in the spectrum are termed as forbidden ordinal patterns.
The presence of consistent forbidden ordinal patterns in
the spectrum is an evidence of deterministic dynamics. A
time series that displays regular dynamics, for instance,
a periodic signal, will have only certain patterns in the
permutation spectrum. It means that the spectrum for
a periodic time series often contains only a small subset
of the possible ordinal patterns. The remaining patterns
will be absent in the spectrum. The same case applies
to the permutation spectrum of any deterministic sig-
nal. A few forbidden patterns observed in the spectrum
is an indication of the complexity of the time series [43].
The presence of few forbidden patterns in the spectrum
means that a large subset of the possible ordinal patterns
are visible in the time series. The presence of large sub-
set of ordinal patterns observed in the time series is an
indication of the complexity of the time series. Higher
complexity also means a higher value of the permuta-
tion entropy for the signal. Forbidden patterns will be

absent if the analyzed time series is purely random [44].
In a random signal, there is no preference for any par-
ticular pattern. Thus, the probability of observing each
of the possible ordinal patterns (corresponding to a par-
ticular D) in the time series is the same. Therefore, no
forbidden patterns can be observed in the permutation
spectrum for a random signal. Further, PST is highly
sensitive to the presence of noise in the time series. The
forbidden patterns might disappear if the time series is
contaminated with even small amount of noise. Ordinal
patterns of larger permutation length, say D = 5, should
be used to make sure that consistent forbidden patterns
are observed [44].

In summary, the deterministic or stochastic nature of
combustion noise has not been characterized accurately
in the literature. A conclusive approach must be un-
dertaken to ascertain the dynamic nature of combustion
noise as its relevance extends to studies on critical tran-
sition to combustion instability. Fractal features in the
pressure measurements acquired during the state of com-
bustion noise are captured using the multifractal spec-
trum. In this study, we employ surrogate tests, with
translational error and permutation entropy as the dis-
criminating statistics, to test for determinism visible in
the measured signal. In addition to this, permutation
spectrum test is used to characterize the dynamic nature
of the time series acquired from experiments. The nature
of noise contamination in the signal could be qualitatively
identified using correlation dimension and correlation en-
tropy.

II. EXPERIMENTAL SETUP

The unsteady pressure data was acquired from a swirl-
stabilized as well as from a bluff-body stabilized back-
ward facing step combustor. The schematics of the setup
can be found in Nair & Sujith (2014). The main compo-
nents of the setup are a settling chamber, a combustion
chamber and a burner provided with a shaft to hold the
bluff-body or swirler. The length of combustion chamber
along with the extension ducts is around 700 mm. The
bluff-body was located at a distance 50 mm from the
backward facing step. A piezoelectric transducer (sensi-
tivity 72.5 mV kPa−1, 0.48 Pa resolution, ±0.64 % un-
certainty) located 90 mm from the backward facing step
was used to acquire the pressure measurements, p′(t). A
16-bit AD conversion card (NI-643, ± 5 V input voltage
range, ± 0.15 mV resolution) was used to acquire the
voltage signal from the pressure transducer. The time
series p′(t) (of 3 seconds duration) was acquired at a sam-
pling frequency of 10 kHz. The ambient temperature was
measured to be 27 ± 1 0C using a dry bulb thermometer
and the relative humidity was measured to be 85 ± 1 %
on a hygrometer, when the pressure measurements were
acquired [8, 10, 11].
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III. RESULTS

The time series of unsteady pressure p′(t) acquired
from bluff-body stabilized (figure 1a) and swirl-stabilized
combustor (figure 1c) during stable combustion are
shown in figure 1. The pressure signal from bluff-body
stabilized combustor has a Hurst exponent (H) of 0.20
± 0.002 and a multifractal spectrum width of 0.65 as ev-
ident from figure 1b. The unsteady pressure data from
the swirl-stabilized configuration has a Hurst exponent
(H) of 0.15 ± 0.002 and a multifractal spectrum width
of 0.65 as evident from figure 1d. The method of multi-
fractal detrended fluctuation analysis (MFDFA) is used
to obtain the multifractal spectrum [46].

FIG. 1: Plot showing (a) the pressure time series
acquired from (a) bluff-body and (c) swirl

configurations and the singularity spectrum, f(α), as a
function of the singularity strength, α, for the

experimental data sets. The multifractal spectrum
presented in (b) and (d) correspond to the pressure
data in (a) and (c) respectively. The values of Hurst
exponent being less than 0.5 (for both (a) and (c))
illustrate the fractal nature of the observational time
series data. The multifractal signature in the signal is
illustrated through the finite width of the singularity

spectrum. The above estimates for Hurst exponent and
multifractal spectrum width are obtained from the

pressure data of length, N= 30000 data points, sampled
at 10000 Hz, acquired from a turbulent combustor with

bluff-body and swirl configurations.

It is known that Hurst exponent [47] is a measure that
detects temporal correlations in a time series. It is a
measure of self-similarity as it characterizes a fractal or
multifractal time series with a scaling exponent or mul-
tiple scaling exponents respectively. The scaling of stan-
dard deviation for segments of different length or scale,
obtained from the time series, is basically estimated as

Hurst exponent (H) here. In other words, the corre-
sponding scaling order q associated with the Hurst expo-
nent discussed here is 2. Negative and positive orders (q)
can be adopted to detect small and large scale amplitude
fluctuations in the time series. The Hurst exponents, Hq,
estimated with these different scaling orders (q), will be
different if the time series has multifractal features. The
finite width of the multifractal spectrum basically con-
veys the same information. It is clear that the time
series obtained from experiments (swirl and bluff-body
configurations) has a Hurst exponent that is less than
0.5. Therefore, the experimental data under study is an
anti−persistent signal that displays multifractal features,
as illustrated in figure 1. These temporal correlations
observed in the experimental time series could arise from
deterministic processes or the time series might as well be
a correlated noise [26]. Hence, fractal features alone are
not sufficient to conclude about the deterministic nature
of the data under analysis.

FIG. 2: Variation of translational error, Etrans , as a
function of embedding dimension, D, for the pressure

time series from (a) bluff-body and (b) swirl
configurations and for the randomly shuffled surrogate
data set. The estimates of translational error for the
original data and the RP surrogates show a clear

distinction between the two data sets. The significance
level corresponding to RP surrogate is obtained to be
23.8 and 31.3 for the pressure data from bluff-body and

swirl configuration respectively.

It is clear from the estimates of Hurst exponent and
multifractal spectrum that the pressure time series ac-
quired during the state of combustion noise possess frac-
tal features. Tests for nonlinearity, along with surrogate
methods, though on a statistical basis, could prove use-
ful to recognize the dynamic nature of the time series.
An ensemble of 19 surrogate data sets of the same length
as the original time series is created so that the null hy-
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pothesis can be rejected at 95 % confidence level, if the
significance level t [Eq. (1)] is greater than 1.6. Trans-
lational error is used as a discriminating statistic for the
analysis. Figure 2 shows the translational error for the
experimental data from the two flame holding configura-
tions as well as for the randomly shuffled surrogate data.
It should be noted that the value of translational error
must be less than 0.1 to characterize a time series as de-
terministic [6, 39]. The estimate of translational error for
the experimental data is close to 0.1, making it difficult
to conclude that it is deterministic. The sensitivity of
the dynamical system to external noise is an important
factor in this context. We find that, a dynamical system
might be highly sensitive to noise such that the estimates
of translational error might be much higher than 0.1 even
for small amount of noise and vice versa. Therefore, there
exists a possibility that the estimates of translational er-
ror obtained for the time series could be realized even
with small amount of noise in the system.

Further, translational error is highly sensitive to the
length of the time series for which the measure is calcu-
lated. The value of translational error for the shuffled
surrogate is much less than 1, even though it is gener-
ated according to the null hypothesis of an uncorrelated
random process. In case of white noise, a short time
series must be examined, for the measure to give the
expected value of 1. However, it is necessary to main-
tain the same length for the surrogate data sets as the
original data to perform the surrogate test. Thus, the
time series length N = 30000 was maintained for the ex-
perimental data and for the ensemble of surrogate data
sets generated from the experimental data. Further, the
value of translational error at embedding dimension, D
= 4 is used as a representative value to compute the t
value, as the measure attains a minimum almost at D
= 4. The translational error for the experimental data
is significantly lower than the RP surrogate. Rejection
of the null hypothesis governing the RP surrogate means
that the experimental data possess temporal correlations.
This conclusion is consistent with the value of Hurst ex-
ponent estimated for the time series acquired from exper-
iments. This motivates us to test the time series obtained
from experiments, against the null hypothesis of FT and
AAFT surrogates, to reach a conclusion about the dy-
namical nature of the time series.

Figure 3 shows the translational error for the experi-
mental data from bluff-body and swirl configurations, as
well as for the FT and AAFT surrogate data sets. In
both cases (a and b), the estimates of translational error
for the FT and AAFT surrogates appear closer to that
of the experimental data. Thus, the null hypothesis of
FT and AAFT cannot be rejected on a statistical basis
at 95 % confidence interval, as evident from the corre-
sponding t values. It must be noted that the t values
corresponding to FT and AAFT surrogate data sets are
much less than that of the RP surrogates. The limita-
tions that can arise while developing the AAFT surro-
gates must be addressed here. The power spectrum of

FIG. 3: Variation of translational error, Etrans , as a
function of embedding dimension, D, for the unsteady

pressure signal from (a) bluff-body and (b) swirl
configuration, FT and AAFT surrogate data sets. The

estimates of translational error for FT and AAFT
surrogates appear close to that of the original data. The

statistical significance of their difference can be
evaluated at a certain confidence level. The significance
level for the FT and AAFT surrogates are 1.33 and 1.04

respectively for the pressure data from bluff-body
configuration while the significance level for the FT and
AAFT surrogates are 1.44 and 0.49 respectively for the

pressure data from swirl configuration.

the surrogate data may not be exactly the same as that
of the original data after the rescaling process associated
with the AAFT surrogate. The power spectrum can get
slightly flattened under this procedure. Iterative algo-
rithms must be used in order to correct such deviations
in the periodogram [33, 34]. Taking into account of the
limitations posed by AAFT, iterated AAFT was used
to confirm the conclusion derived from AAFT. However,
similar observation could be made if iterated AAFT is
used instead of AAFT. Therefore, the results for iterated
AAFT surrogate is not included in figure 3. Thus, the
presence of nonlinearity in the time series correspond-
ing to combustion noise obtained from experiments from
swirl and bluff-body configurations could not be proven
through surrogate analysis, with translational error as
the discriminating statistic.

We proceed the surrogate analysis with a different dis-
criminating statistic, the permutation entropy. Figure
4 shows the plot of normalized permutation entropy as
a function of permutation order for the time series ac-
quired from the two combustor configurations, as well
as for shuffle, FT and AAFT surrogate data sets. It is
computationally expensive to estimate this measure for
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FIG. 4: Plot showing normalized permutation entropy,
nPE, as a function of permutation order, D, for the
acquired time series from (a) bluff-body and (b) swirl
configurations, as well as for shuffled, FT and AAFT
surrogate data sets. The estimate of permutation

entropy for the original data is clearly different from
that of the randomly shuffled surrogate data set. The
estimates for the FT and AAFT surrogate data sets are
not significantly different from that of the experimental

series, as evident from the figure.

higher permutation orders i.e., for higher embedding di-
mension. Hence, the maximum permutation order was
set to be seven. However, this statistic could not differ-
entiate the original data from FT and AAFT surrogates
as evident from the figure.

The presence of determinism in the time series is not
evident from the surrogate tests performed, when trans-
lational error and permutation entropy are used as the
discriminating measures. To further analyze the experi-
mental time series, the symbolic visual test detailed be-
fore, called the permutation spectrum test, is adopted
[44]. The Bandt and Pompe scheme [45] is used to im-
plement the test and hence the name, permutation test.
Figure 5 compares the spectrum of the experimental data
from bluff-body (5a) and swirl (5b) configurations with
that of high-dimensional chaotic data set (Mackey Glass
system, figure 5c). The frequency of the ordinal patterns
are estimated with D = 4 and embedding delay=1 (con-
secutive points) as the parameters. 24 possible ordinal
patterns are considered for this particular choice of D.
The patterns in the spectra corresponding to the experi-
mental and Mackey Glass data sets look similar. The or-
dinal patterns that do not appear in the time series data
are called forbidden ordinal patterns. The frequency of
these forbidden patterns will be zero in the permutation
spectrum. Consistent forbidden patterns in the spectra
for Mackey Glass data set confirm the deterministic na-

FIG. 5: Permutation spectra with D = 4 and time lag
(τ) = 1 for the pressure data acquired from (a)

bluff-body and (b) swirl configurations (each of length
N = 30000 data points), (c) Mackey Glass chaotic time
series of length N = 2000 data points. The patterns for

the two data sets (experimental and Mackey Glass
chaotic data set) look similar. The presence of

consistent forbidden ordinal patterns in the spectra for
Mackey Glass chaotic data set indicates the

deterministic nature of the time series. Such patterns
are missing in case of the experimental data set,
indicating the presence of noise in the time series.

ture of the time series. However, there are no forbidden
ordinal patterns in the spectra of the experimental data
in contrast to that of the Mackey Glass system. There-
fore, no deterministic features could be observed in the
spectra for the experimental data. The time series ob-
tained from experiments can be contaminated with noise.
There exists a possibility that the frequency of any of the
patterns might be non−zero in the presence of a small
amount of dynamic noise. There are some patterns that
are dominant (higher frequency) in the pressure data as
evident from figure 5a and 5b. In other words, it means
that there are large number of vectors pointing in similar
direction in the reconstructed phase space. This indi-
cates that the data possesses temporal correlations. If
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FIG. 6: Permutation spectra with D = 4 and time lag
(τ) = 11 for experimental data from (a) bluff-body and
(b) swirl configurations (each of length N = 30000 data
points), (c) Mackey Glass chaotic time series of length
N = 2000 data points. τ = 11 is the embedding delay
for both the data sets as obtained from the average
mutual information. Notice the consistent forbidden
patterns in the Mackey Glass chaotic data, which is a

signature of determinism in the time series.

the data is purely random, the reconstructed vectors will
be aligned in all directions and not in any specific direc-
tion. Therefore, a distinct peak may not be observed in
the permutation spectrum of a completely random signal.

Consecutive elements in the time series form the mem-
bers of the permutation sequence when a time delay of
τ = 1 (as a multiple of sampling time) is chosen. The
patterns in the spectrum, derived using consecutive el-
ements in the time series, as shown in figure 5, might
not be representing the actual system dynamics if the
time series is contaminated with noise. This is because,
the patterns in the spectrum for τ = 1 could as well be
due to the noisy correlations in the data. The choice
of delay is critical in such situations. Hence, a charac-
teristic time scale must be an appropriate choice for τ ,
while analyzing a noisy time series. The optimum time
delay used for phase space reconstruction is an appro-
priate value for τ . The average mutual information can

be used to estimate the optimum time delay. The av-
erage mutual information reaches its first minimum at
τ = 11 for the pressure time series and it would be a
proper choice for τ . For this τ , subsequences of the form
{p′(t), p′(t+τ), p′(t+2τ), ···, p′(t+(D−1)τ)} are extracted
from the time series, where t is a particular time instant.
The permutation spectrum thus obtained through this
partition will be much more reasonable and informative
as far as the objective of this analysis is concerned. The
patterns in the spectrum could thereby reveal the intrin-
sic dynamics of the system from the analyzed time series.
Figure 6 compares the PST of the experimental data

from bluff-body (6a) and swirl (6b) configurations with
that of high-dimensional chaotic data set (Mackey Glass
system, figure 6c) estimated with D = 4 and τ = 11 (non-
consecutive points). Though the patterns look similar,
the spectrum corresponding to the experimental data set
does not possess any forbidden ordinal patterns, indica-
tive of the presence of noise in the signal. Low values
of frequency for certain ordinal patterns observed in the
permutation spectra is suggestive of the potential forbid-
den ordinal patterns if the experimental data were not
contaminated with noise. However, the similarity in the
patterns observed in the spectra (between unsteady pres-
sure data and Mackey Glass chaotic data) at time delays
1 and 11 might be a consequence of high dimensional
chaos manifested in the experimental time series data.

FIG. 7: Permutation spectra with D = 5 and time lag
(τ) = 11 for the experimental data from (a) bluff-body
and (b) swirl configurations (each of length N = 30000
data points). Notice the presence of certain forbidden
ordinal patterns in the spectrum for pressure data from

both configurations (see zoomed in view).

Certain forbidden patterns appeared for the PST with
D = 5 and τ = 11, when it was implemented for the
pressure time series acquired from bluff-body (7a) and
swirl (7b) configurations (consisting of N = 30000 data
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points each), as shown in figure 7. This observation is
similar to the result obtained for the noise driven sine
map, as illustrated in Kulp & Zunino (2014).

FIG. 8: D2 as a function of the embedding dimension
(D) for the experimental data (•) from (a) bluff-body
and (b) swirl configurations, random shuffled surrogates
(–) and AAFT surrogates ( ). Dsat

2 is attained at D ∼
9 - 10, indicating the high dimensional nature of the

system. An ensemble of 10 surrogates (random
permutation and AAFT surrogates) is used to obtain

the plot. For the shuffled surrogate, the estimates of D2

is cut off at D = 5, as the trend of the curve clearly
showed no saturation in D2. The estimates of D2 for
the experimental data sets (both a and b) closely
resemble that of the ensemble of AAFT surrogates.

This observation for the experimental data is indicative
of contamination with white noise.

To ascertain the claim that the data indeed has a de-
terministic nonlinearity of high dimensional nature, cor-
relation dimension and correlation entropy are adopted.
There is an additional objective underlying the choice of
these measures. It is clear from the permutation spec-
trum that deterministic features are not discernable due
to the presence of noise in the time series. The next task
is to find the nature of this noise. It has been shown
that the correlation dimension and entropy can possibly
detect white and colored noise contamination in a signal
[30]. The D2 estimates for the pressure data from both
configurations, along with the corresponding shuffle and
AAFT surrogates, can be found in figure 8. The num-
ber of surrogates used for this analysis was limited to
10, for random and AAFT surrogates. This is because
the objective is not limited to assess the confidence level
associated with the estimates for correlation dimension.
Rather, the interest here extends to detecting the fea-
tures of noise being embedded in the time series. It can
be seen that, D2 does not attain a saturated value for

FIG. 9: Correlation entropy, K2 vs D for the
experimental data (•) from (a) bluff-body and (b) swirl

configurations, random shuffled surrogates (–) and
AAFT surrogates ( ). An ensemble of 10 surrogates is
used to compare the entropy estimates with that of the

measured signal. The estimates of K2 for the
experimental data sets (both a and b) do not

significantly differ from the AAFT surrogates indicating
the presence of colored noise in the signal.

the ensemble of random surrogates. It is, therefore, con-
sistent with the fact that a pure random signal must be
infinite dimensional. Further, Dsat

2 for the experimental
data is observed at high embedding dimensions. Hence,
it supports the conclusion that the measured signal has a
high dimensional nature. Another significant observation
is that original data and AAFT surrogates have similar
estimates for the correlation dimension. Earlier studies
indicate that this observation might be an outcome of
contamination with white noise in the signal [30]. This
conclusion might not be valid without using a higher em-
bedding dimension to obtain the estimate for correlation
dimension. The estimates for correlation dimension could
turn out to be inaccurate if the number of delayed vectors
are insufficient or in other words, if the time series is short
in length. This is because the number of reconstructed
vectors depends on the embedding parameters used, and
more importantly, this number decreases as the embed-
ding dimension is increased. However, these factors do
not undermine the following conclusions being derived
from the analysis i.e., D2 saturates at an embedding di-
mension close to 10 suggesting high dimensional dynam-
ics and similar estimates for data and AAFT surrogates
indicating possible contamination with white noise. The
presence of white noise might be a contribution from the
measurement system as observational noise is expected
to be unrelated to the system dynamics.
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Further, the presence of dynamic noise in the signal
is also expected. It is often difficult to detect noise of
this nature as it possesses temporal correlations. This
difficulty persists, irrespective of the nature of the sys-
tem; i.e., low or high dimensional system, from which
the time series is acquired. The estimates of correlation
entropy for the original data can be compared to that
of the AAFT surrogates to establish the presence of cor-
related noise in the time series. Figure 9 illustrates the
correlation entropy as a function of embedding dimension
for the experimental data, random shuffled and AAFT
surrogate sets. The estimates of correlation entropy for
AAFT surrogate data sets follow that of the original data
as evident from figure 9. It is also clear from the permu-
tation spectrum that the experimental data has features
of high dimensional chaotic signal (see figures 5 and 6).
Hence, we conclude that the data is generated from a
deterministic process and not an outcome of a stochastic
process. Thus, the estimates of AAFT surrogates being
similar to that of the experimental data suggests possible
contamination with colored noise [30].

In summary, we conclude that the pressure fluctuations
during the state of combustion noise has the features of
high dimensional chaotic data. We show that the pres-
sure data is contaminated with white and colored noise.
We find that the pressure data from swirl-stabilized com-
bustor has similar dynamical features as that of the data
from a bluff-body stabilized combustor. This observation
indicates that the features of combustion noise are inde-
pendent of the flame holding configuration of the combus-
tor. Earlier studies [8, 11] have shown that combustion
noise is multifractal and that the pressure fluctuations
have dynamical features which resemble that of a chaotic
signal. Nair et al. (2013) adopted local flow test (Ka-
plan Glass test) along with Random Permutation test to
identify if these aperiodic pressure fluctuations have a de-
terministic signature. Kaplan Glass method is similar to
translational error as both measures are based on the idea
that the trajectories of a deterministic signal will have
similar direction in a given region in the reconstructed
phase space. The estimates of Kaplan Glass method and
translational error provides the degree of determinism in
the phase space. However, appropriate surrogate meth-
ods must be adopted to completely distinguish the time
series from a stochastic signal if Kaplan Glass method
is used as a test for determinism. The estimates of the
pressure data for any statistic, being different from that
of the RP surrogate, do not provide any conclusive proof
that the original data is deterministic. This observation
merely indicates that the pressure data possesses tempo-
ral correlations. Therefore, it is necessary to adopt FT
and AAFT surrogates in addition to the RP surrogates
to conclusively prove that the data is deterministic in na-
ture. Further, Nair et al. (2013) used 0−1 test for chaos
to determine the dynamic nature of pressure fluctuations.
However, 0−1 test, by itself, cannot distinguish a chaotic

signal from a correlated stochastic process [48, 49]. In
short, Nair et al. (2013) used two measures along with RP
surrogate to conclude that the pressure data is chaotic in
nature. Therefore, the analysis carried out by Nair et al.
(2013) is not conclusive. In this study, we employed ad-
ditional surrogate methods such as FT and AAFT surro-
gates to check if the original data is indeed deterministic
or merely an outcome of a stochastic process. We used
multiple measures to test for determinism visible in the
pressure measurements. To avoid false rejections, we cal-
culated the significance level for the estimates of different
statistics based on the total number of surrogates used.
We used correlation entropy and correlation dimension
to find the nature of noise contamination in the pressure
data.

IV. DISCUSSIONS

The combined use of measures, Hurst exponent, trans-
lational error, permutation entropy, permutation spec-
trum, correlation dimension and correlation entropy, re-
veal that the time series acquired during the state of
combustion noise exhibits high dimensional chaotic dy-
namics. Further, the pressure data is contaminated with
measurement (white) and dynamic (colored) noises, as
evident from the estimates of correlation dimension and
entropy. In the analysis, we find that the discriminating
measures adopted are sensitive to noise. Thus, a single
metric is not sufficient to conclude about the features of a
time series acquired from experiments. It also turns out
that the surrogate tests, employed in this study, could
not reveal any nonlinearity present in the measured sig-
nal. This motivated us to adopt a symbolic visual test
called permutation spectrum test to recognize the dy-
namic nature of the pressure data obtained from exper-
iments. Further, the permutation spectrum adopted in
this study could be used a tool to study different states
observed in dynamical systems, such as intermittency,
quasiperiodicity etc. In addition to this, the spectrum
test is efficient to characterize the nature of a time series
even if it is contaminated with noise.
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