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Abstract

A theory of rigid-plastic single crystal deformation
based on the hypothesis that the crystal follows a
mode of deformation that minimizes the plastic power
is developed. In addition to the usual homogeneous
slip modes, plastic power minimization in the present
theory also extends over inhomogeneous deformation
modes in the form of deformation bands or shear bands.
Bands are assumed to originate from unstable pertur-
bations of the lattice orientation. The evolution of
the banded substructure with continued deformation
depends on the mobility of the inter-band dislocation
boundaries. The theory predicts the evolution of sub-
structural morphology and lattice orientation with de-
formation. These predictions agree quantitatively with
experimental observations in initially (112)/[111̄] and
(001)/[110]-oriented copper single crystals that shear
band and deformation band, respectively, when sub-
jected to plane strain deformation.

Keywords: Deformation band, Shear band, Texture
modeling, Rolling, Copper

1 Introduction

A perfect single crystal is characterized by a uniform
lattice orientation. When plastically deformed, a single
crystal of a medium stacking fault energy metal such
as copper may divide into substantially misoriented do-
mains [1] each of which undergoes deformation differ-
ent from that imposed on the crystal as a whole. This
division may be effected over a wide range of length
scales [2, 3]. At the coarsest scale the crystal may di-
vide into lath shaped regions, several tens of dislocation
mean free paths wide and long enough to extend across
the entire crystal. Depending on their morphology, such
regions are either termed deformation bands [4, 5, 6] or
shear bands [7, 8]. On a finer scale, the crystal may
divide into regions called cell blocks whose dimension is
of the order of a few dislocation mean free paths. Cell
blocks are demarcated by dislocation structures called
dense dislocation walls and/or microbands [9]. On the
finest scale, the crystal may be divided by incidental dis-
location boundaries that arise from the statistical trap-
ping of glide dislocations, whose average separation is
the mean free path of dislocations. The nature of the
subdivision (presence or absence of each of the three
scales of subdivision, microstructural morphology, lat-
tice misorientation across demarcating boundaries, etc)̇

is known to depend on the lattice orientation of the
initial crystal with respect to the imposed deforma-
tion [10].

The present work is concerned primarily with defor-
mation and shear bands in single crystals. Whereas
deformation banding refers to crystal division into two
or more regions of comparable size that undergo com-
parable deformation [4, 5, 6], shear banding refers to an
uneven division wherein the smaller domain undergoes
the bulk of the deformation primarily by way of shear.
Shear banding is preceded by the formation of obstacles
to homogeneous dislocation glide in the crystal. If the
precursory obstacles are fine twin lamellae [11, 12, 13],
shear bands are classified as brass-type; if they are dislo-
cation walls of a cell block structure [8], the shear bands
are of the copper-type.

The theoretical and experimental literature on crys-
tal banding is vast. Below, we summarize three theo-
ries of banding. The first of these theories was devel-
oped by Hill [14], Rudnicki and Rice [15], Asaro and
co-workers [16, 17, 18], and Anand and Spitzig [19, 20].
It views localized deformation as an instability in the
macroscopic constitutive description of the inelastic de-
formation of the material. Shear bands develop, ac-
cording to this theory, when the elastoplastic field equa-
tions admit an inhomogeneous velocity field as solution.
In agreement with experimental observations, this the-
ory exhibits shear banding even in a hardening mate-
rial [17, 18] and correctly predicts the orientation of
shear bands [17, 18, 19, 20].

The second theory, due to Dillamore et al [21] and
Van Houtte et al [22] starts with the following criterion
of material instability: If σ̂ denotes a stress measure and
ǫ̂ denotes a plastic strain measure, then the condition
for localized deformation is given by dσ̂/dǫ̂ ≤ 0. As in
the first approach, these authors have shown that shear
banding can be achieved even in a hardening material
if one accounts for geometric softening. In Dillamore et

al’s theory, the orientation of the shear band will be so
as to maximize geometric softening.

The third theory is due to Lee and co-workers [4, 23],
and Ortiz and co-workers [24, 25]. Based on exper-
imental observations of patchy slip in single crystals
(wherein spatially isolated single slipping domains are
observed after deformation), it has been conjectured at
least since 1935 [26] that deformation in a crystal occurs
so as to minimize latent hardening. The variational the-
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ory of Ortiz and Repetto [24] develops this conjecture
by choosing the mode of crystal deformation (includ-
ing banding) that minimizes the work of plastic defor-
mation. This criterion causes crystal banding because
plastic work can be reduced by lowering latent harden-
ing, which in turn can be reduced if multi-slip activity in
a homogeneously deforming crystal is replaced with sin-
gle slip activity within spatially isolated bands. Thus,
latent hardening of slip systems is necessary for banding
in this theory.

The first theory above [14, 15, 17, 18, 19, 20] is pred-
icated on a macroscopic stability criterion, and the sec-
ond theory [21, 22] is based on plastic power minimiza-
tion and maximum geometric softening criteria. These
theories therefore neither account for, nor predict as-
pects of the microstructural phenomena of banding.
The third theory [24, 25] does account for the energy
stored between bands in the form of geometrically nec-
essary dislocations, and includes it in the plastic work

minimized during the overall deformation. However,
this theory too leaves the causative physical phenom-
ena of banding unaccounted for, because its variational
banding hypothesis (minimizing plastic work over the
entire deformation history) links band formation at any
instant to deformation after that instant as well.

The present theory of crystal banding differs fun-
damentally from the above theories in that it aims
to describe the microstructural phenomena of banding.
Our motivation thus most closely parallels that behind
the experimental work of Korbel, Embury and cowork-
ers [27, 28, 29]. Following Mahesh and Tomé [30], we
hypothesize that banding is initiated stochastically from
small perturbations in lattice orientation. These pertur-
bations lead to small perturbations in the local defor-
mation field, which may unstably grow the lattice per-
turbation provided (1) the inhomogeneous deformation
dissipates less plastic power than the homogeneous de-
formation, and (2) the crystal is orientationally unstable

(defined in Sec. 2.4) in the favored inhomogeneous de-
formation mode given by (1). Condition (1) is based
on an extension of the well established Taylor postu-
late [31] due to Chin and Wonsiewicz [32]. Banding
or otherwise at any instant is predicted by the above
criterion using only the state of the crystal and the im-
posed deformation rate at that instant. These deter-
mine the instantaneous plastic power of deformation.
We also hypothesize that a banded crystal deforms so
as to minimize plastic power with continued deforma-
tion. Based on conditions (1) and (2) above, the present
theory predicts (possibly inhomogeneous) crystal defor-
mation that maximizes geometric softening, and reduces
latent hardening, which are fundamental assumptions of
the previous theories. Also, the present theory applies
to both deformation and shear banding, predicts banded
substructure morphology and misorientation evolution,
and gives detailed insight into the accompanying sub-
structural transitions.

The plan of this paper is as follows. Section 2 de-
tails the present theory. Section 3 introduces the phe-
nomenology needed to represent the substructural state.
Section 4 compares the present predictions with exper-
imental results from the literature of two well-studied
copper crystals under rolling deformation.

2 Theory of Banding

2.1 Constitutive Law

The crystal is modeled as a rigid-plastic material de-
forming according to the visco-plastic constitutive law:
If ǫ̇ denotes the strain rate in a crystal or band whose S
slip systems indexed by s have unit normals ns and unit
Burgers vectors bs the crystal constitutive response is
taken to follow [35, 36]

ǫ̇ =

S
∑

s=1

ms
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where σ is the Cauchy stress, τ s is the critical resolved
shear stress of slip system s, n is the reciprocal rate
sensitivity, and the Schmid tensor ms of slip system s
is given by

ms = (ns ⊗ bs + bs ⊗ ns)/2, s = 1, . . . , S. (2)

Taking the slip rate γ̇s in slip system s
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we may express Eq. (1) in the form ǫ̇ =
∑

s γ̇sms.

2.2 Plastic Power of a Banded Crystal

Consider a crystal divided into two types of (not nec-
essarily contiguous [23, Fig. 10]) domains called bands
with volume fractions 0 ≤ w(1) ≤ 1, and w(2) = 1−w(1).
Let the uniform lattice orientation of the bands be spec-
ified by orthonormal tensors g(1), and g(2) that quan-
tify the rotation to be imparted to bring the sam-
ple and lattice coordinate systems into coincidence in
each band. Let the critical resolved shear stress in
slip system s of band i be τs,(i), i = 1, 2. (g(1), g(2))
completely determine the Schmid tensors ms,(1), and
ms,(2), s = 1, . . . , S in the bands. So if the bands are
known to deform with strain rates ǫ̇(1), and ǫ̇(2), and
have known critical resolved shear stress (τ s,(1), τs,(2)),
their respective Cauchy stress, σ(1) and σ(2) are deter-
mined by Eq. (1). The plastic power of deformation of
the banded crystal is defined as

Ẇ def(w(1), w(2), ǫ̇(1), ǫ̇(2), g(1), g(2))

= w(1)ǫ̇(1) : σ(1) + w(2)ǫ̇(2) : σ(2).
(4)

In discussing banding in the rest of Sec. 2.2 and
Sec. 2.3 we assume that the s-th critical resolved shear
stress in both bands is equal, i.e., τ s,(1) = τs,(2), for all
s. Homogeneous deformation of the crystal corresponds
to ǫ̇(1) = ǫ̇(2), g(1) = g(2), and σ(1) = σ(2).
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Let us first consider a banded crystal with g = g(1) =
g(2), whose bands are subjected to strain-rates ǫ̇(1) and
ǫ̇(2) that satisfy

w(1)ǫ̇(1) + w(2)ǫ̇(2) = ¯̇ǫ, (5)

where ¯̇ǫ denotes the overall strain rate imposed on the
crystal. The following inequality then follows from the
convexity of Ẇ def [24]:

Ẇ def(w(1), w(2), ǫ̇(1), ǫ̇(2), g, g) ≥
Ẇ def(w(1), w(2), ¯̇ǫ, ¯̇ǫ, g, g).

(6)

Thus, of all inhomogeneous deformations capable of ac-
commodating the deformation imposed on the crystal
according to Eq. (5), it is the homogeneous deforma-
tion mode that minimizes the plastic power. Eq. (6)
effectively precludes satisfaction of the Chin and Won-
sierwicz [32] necessary condition for banding. Expressed
in terms of deformation rates, this condition requires the
power of banded deformation to be smaller than that of
homogeneous deformation, i.e.,

Ẇ def(w(1), w(2), ǫ̇(1), ǫ̇(2), g, g) + Ẇ acc ≤
Ẇ def(w(1), w(2), ¯̇ǫ, ¯̇ǫ, g, g),

(7)

where the power Ẇ acc ≥ 0 is associated with accom-
modation of incompatibility between the bands and be-
tween the crystal and its surroundings.

2.3 Lattice Orientation Perturbation

Crystals however do exhibit small variations in lat-
tice orientation. Even in an initially perfect crystal,
these lattice orientation perturbations are caused by in-
cidental dislocation boundaries (IDBs) generated during
plastic deformation. Hughes et al [38] have observed
that the misorientation vector across IDBs is uniformly
distributed over the unit sphere, that the average mis-
orientation angle 〈ω〉 scales with von Mises strain ǫvM

as
〈ω〉 = 〈k〉√ǫvM, (8)

and that the maximum misorientation angle is r = 3 to
5 times 〈ω〉. They find 〈k〉 ≈ 1◦ for aluminum. The
small lattice orientation perturbation induced by IDBs
suffices to break the convexity of Ẇ def in Eq. (6). For
an imperfect crystal (g(1) 6= g(2)) the Chin-Wonsiewicz
condition suggests the following non-degenerate mini-
mization problem to determine the deformation state:

Ẇ def
∗ = min

C∗

Ẇ def(w(1), w(2), ǫ̇(1), ǫ̇(2), g(1), g(2)), (9)

where minimization is subject to the constraints C∗ that
(i) 0 ≤ w(1) ≤ 1, w(1) +w(2) = 1, (ii) Eq. (5) holds, (iii)
if g denotes the average lattice rotation tensor of the
crystal, [g(1)]−1g and [g(2)]−1g correspond to a rotation
of −ωw(2) and ωw(1) about some unit misorientation
vector m̂, respectively, (iv) 0 ≤ ω ≤ r〈ω〉, and (v)

[ǫ̇] = ǫ̇(2) − ǫ̇(1) = (λ ⊗ ν + ν ⊗ λ)/2 (10)

for some λ and ν. Eq. (10) is necessary to ensure
deformation compatibility across the interface between
bands with normal ν [39]. Eq. (10) implies that λ =
2[ǫ̇]ν − ([ǫ̇]ν · ν)ν.

The minimization problem in Eq. (9) is readily solved
using a projected BFGS scheme [40]. Its solution yields
the energetically most favorable configuration of bands.
We will refer to this configuration as the nascent banded
crystal. The Chin-Wonsiewicz condition takes the form

Ẇ def(w(1), w(2), ǫ̇(1), ǫ̇(2), g(1), g(2)) + Ẇ acc ≤
Ẇ def(w(1), w(2), ¯̇ǫ, ¯̇ǫ, g, g),

(11)

for a nascent banded crystal, subject to Eq. (5), and
is typically satisfied because Ẇ acc is usually one or two
orders of magnitude smaller than the difference between
the plastic power terms [41, 30] in Eq. (11). Since not
all crystal orientations have been observed to band ex-
perimentally, this suggests that Eq. (11) is a necessary,
but overly permissive banding condition.

2.4 Lattice Orientational Stability

If L(1) and L(2) are the velocity gradients in the bands
of a nascent banded crystal, compatibility across their
common interface requires that [39]

[L] = L(2) − L(1) = λ ⊗ ν. (12)

Eq. (10) assures us of the satisfaction of the symmetric
part of this equation. To obtain the rigid spins of the
bands needed for compatibility, we decompose L(i), i =

1, 2 as L(i) = L
(i)
ss + W (i), where

L(i)
ss =

S
∑

s=1

γ̇s,(i) bs,(i) ⊗ ns,(i), i = 1, 2, (13)

denotes the velocity gradient associated only with slip
activity γ̇s,(i) in each band entailing no lattice spin, and
the remainder,

W (i) = L(i) − L(i)
ss , i = 1, 2 (14)

denotes the lattice spin in each band needed to en-
sure compatibility according to Eq. (12). Substituting
Eq. (14) in Eq. (12) we obtain

(L(2)
ss + W (2)) − (L(1)

ss + W (1)) = λ ⊗ ν. (15)

Additionally demanding that the average velocity gra-
dient in the crystal equal the imposed velocity gradient,
L̄, we have

w(1)(L(1)
ss + W (1)) + w(2)(L(2)

ss + W (2)) = L̄. (16)

Eqs. (15) and (16) yield

W (1) = skew
{

(L̄ − 〈Lss〉) − w(2)(λ ⊗ ν − [Lss])
}

,

W (2) = skew
{

(L̄ − 〈Lss〉) + w(1)(λ ⊗ ν − [Lss])
}

,

(17)
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for the lattice spins in the bands, where 〈Lss〉 =

w(1)L
(1)
ss + w(2)L

(2)
ss , and [Lss] = L

(2)
ss − L

(1)
ss .

After the imposition of the lattice orientation pertur-
bation, the misorientation between the nascent bands
is ω about the optimal unit misorientation vector m̂

(Sec. 2.3). Further deformation of the crystal may
increase or decrease the misorientation between the
bands. We term a nascent banded crystal orientation-

ally unstable if the lattice spins of the nascent bands
during further deformation increases their misorienta-
tion. Otherwise, we term that crystal orientationally

stable. Operationally, orientational instability corre-
sponds to m̂ · [w] > 0, and orientational stability to
m̂ · [w] ≤ 0, where [w] is the dual vector of the skew
tensor [W ] = W (2) − W (1) that denotes the relative
lattice spin of the nascent bands. We regard orienta-
tional instability as a necessary condition for banding
to supplement the Chin-Wonsiewicz condition. We will
find in Sec. 4 that orientational instability proves to be
the more stringent condition by far.

The present notion of orientational stability funda-
mentally differs from that of Raabe et al [42]. Whereas
our definition hinges on compatibility across the inter-
band interface of an inhomogeneously deforming nascent
banded crystal, Raabe et al’s definition pertains to a
homogeneously deforming lattice orientation perturbed
crystal. Compatibility across any inter-band boundary
is automatic in their idealized crystal, and plays no role
in determining orientational stability.

2.5 Deformation of a Banded Crystal

We consider two routes for the evolution of the banded
substructure. We term the bands mobile relative to the
material if material points may move across the inter-
band boundary during deformation. Thus, band mo-
bility is equivalent to the mobility of the dislocations
constituting the inter-band boundary. Bands that are
not mobile will be called immobile.

Let us first consider an immobile band that disallows
material exchange with the adjacent band, and whose
shape therefore must evolve with the shape of the crys-
tal. The shape of the crystal is described by its defor-
mation gradient, F . If νb denotes the normal to the
inter-band boundary at the instant of banding, corre-
sponding to the crystal deformation gradient Fb, the
orientation of the immobile band normal ν when the
deformation gradient of the crystal is F is given as [30]

ν = F T
b F−T νb/‖F T

b F−T νb‖. (18)

Next, in the case of a mobile band we take the bound-
ary to be oriented so as to minimize Ẇ def . The solution
of the minimization problem

Ẇ def
∗∗ = min

C∗∗

Ẇ def(w(1), w(2), ǫ̇(1), ǫ̇(2), g(1), g(2)) (19)

then yields the orientation of the normal to the inter-
band boundary, ν. In solving Eq. (19), the lattice orien-
tations, g(1), and g(2), and band volume fractions w(1)

and w(2) are held fixed. The minimization is subject to
the constraints C∗∗ that (i) Eq. (5), and (ii) Eq. (10)
hold.

We have described the evolution of ν with contin-
ued deformation of a banded crystal. Compatible de-
formation across an inter-band boundary with normal
ν also demands rigid rotation of each band according to
Eq. (17). Thus the misorientation across the inter-band
boundary will generally vary with continued deforma-
tion.

3 Hardening Model and Phenomenology

The hardening model for copper used in this work is an
extension of Cuitiño and Ortiz’s [43] model. It incor-
porates the experimental observation of Franciosi and
co-workers [44, 45] that latent hardening of slip systems
is anisotropic and depends on the type of interaction
(coplanar interaction, junction formation, etc.) between
dislocations in the active and latent slip systems. The
interaction between different slip systems is described
by a 12 × 12 square matrix [Ast]. If ρt is the disloca-
tion density in slip system t, the obstacle density in slip
system s is taken to be

∑

t Astρt.
In Cuitiño and Ortiz’s model, the obstacle density

is assumed to be homogeneously distributed through-
out the crystal. However, numerous TEM studies
(e.g., [9, 10, 46]) have revealed that depending on the
crystal orientation, dislocations may be organized in the
form of parallel dislocation walls. It is expected that
τs in the presence of dislocation walls will significantly
differ from that in the state of homogeneous obstacle
distribution. To account for this, we must identify the
crystal orientations that form dislocation walls.

3.1 Condition for dislocation wall formation

In copper undergoing 〈110〉(111) slip, let s and s′ be a
pair of cross slip systems (bs = bs′

) with slip rates γ̇s

and γ̇s′

. s and s′ are simultaneously activated if

1/c1 ≥ |γ̇s/γ̇s′ | ≥ c1, (20)

where 0 ≤ c1 ≤ 1 is a fitting parameter. Let S be the
set of all simultaneously activated cross slip systems and
let the slip activity on the crystallographic plane p with
normal np be

Γ̇p =
∑

{s:s6∈S ,ns=±n
p}

|γ̇s|. (21)

If p∗ and p∗∗ are the slip planes with the largest and
second largest Γ̇p, and

Γ̇p∗/Γ̇p∗∗ ≥ c2 > 1, (22)

we assume that a dislocation wall forms parallel to p∗

according to the mechanism suggested by Jackson [47],
wherein primary dislocations react with secondary dis-
locations emitted in the cross-slip system to plastically
relax the stress field of the primary dislocations. Slip
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Tensile Citation Exptl. Γ̇p∗/Γ̇p∗∗

axis substructure FC RC
[441] [48] Type 1 2.96 179
[221] [48] Type 1 2 · 104 1.3 · 105

[415] [49] Type 1 2.22 39
[001] [50] Type 2 0/0 0/0
[433] [48] Type 3 1 1
[322] [48] Type 3 1 1
[211] [48] Type 3 1 1
[111] [50] Type 3 0/0 0/0

Table 1: Correlation between the experimentally ob-
served substructure after uniaxial tension, and the cal-
culated Γ̇p∗/Γ̇p∗∗ ratio in Eq. (22) obtained from FC
and RC calculations (see text).

systems s ∈ S are not in accord with this mechanism
and are therefore excluded from the computation of Γ̇p.

To validate the above phenomenological assumption,
Table 1 lists the computed Γ̇p∗/Γ̇p∗∗ under uniaxial ten-
sion in eight copper single crystals studied experimen-
tally by Kawasaki and co-workers [48, 49, 50] assuming
τ1 = τ2 = · · · = τ12 and assuming two different sets of
boundary conditions representing uniaxial tension along
the 1-direction: Full Constraints (FC) that imposes
ǫ̇11 = 1, ǫ̇22 = ǫ̇33 = −0.5, and ǫ̇12 = ǫ̇13 = ǫ̇23 = 0,
and Relaxed Constraints (RC) that imposes ǫ̇11 = 1,
σ22 = σ33 = 0, and σ12 = σ13 = σ23 = 0. The experi-
mentally observed substructure in each of the eight crys-
tal orientations has been classified in column 3 following
Huang [46]. Type 1 refers to substructures comprising of
a single crystallographic dislocation wall, Type 2 to sub-
structures with no walls, and Type 3 to substructures
wherein two non-crystallographic walls were observed.
Table 1 suggests that crystals with Γ̇p∗/Γ̇p∗∗ ≫ 1 form

Type 1 substructures. If Γ̇p∗/Γ̇p∗∗ ≈ 1, either Type 2
or Type 3 substructures form.

We account for the effect of dislocation walls on τ s

only in Type 1 crystals since it is in them that the
anisotropic hardness correction for the dislocation walls
will be largest. In Type 1 crystals, we modify Franciosi’s
interaction matrix [Ast] as follows. Let s∗ be a slip sys-
tem in the plane p∗. We scale all Ass∗ by a factor b1 ≥ 1,
and all As∗t by a factor 0 < b2 ≤ 1. b1 ≥ 1 reflects
the expectation that dislocations arranged in a contin-
uous wall can, from topological considerations, better
obstruct dislocation activity in other slip systems in-
tersecting the wall than when scattered homogeneously
throughout the crystal. On the other hand, 0 < b2 ≤ 1
reflects the expectation that dislocations in the wall may
be less likely to react with dislocations from other slip
systems due to shielding by other dislocations in the
wall.

3.2 Thin Domains

A thin domain (e.g., a shear band) is one with at least
one dimension comparable to the mean free path of dis-

locations. Plastic flow in thin domains may be substan-
tially influenced by its boundaries. Here we assume such
domains harden isotropically, i.e., Ast = aiso, for all s, t.

3.3 Dislocation Walls as Precursors to Shear
Banding

We assume that Type 1 crystals cannot deformation
band while Type 2 or 3 crystals cannot shear band.
This assumption is supported by numerous experimen-
tal studies [3, 5, 8, 11, 12, 27, 28, 29, 33] wherein ob-
stacles to homogeneous dislocation motion (dislocation
walls or fine twin boundaries) have been observed be-
fore shear banding, but not before deformation band-
ing. It reflects the physical consideration that shear
bands nucleate when piled up dislocations cut-through
a pre-existing obstacle structure [51], whereas deforma-
tion bands nucleate relatively unhindered by obstacles.
Thus, deformation banding appears to be the energet-
ically preferred mode of banding and shear banding a
mode that is resorted to only if deformation banding is
suppressed by a pre-existing obstacle substructure.

It follows that whereas the volume fractions of the
nucleated deformation bands is determined by Eq. (9),
those of nucleated shear bands may be determined by
the pre-existing obstacle structure. Lacking quantita-
tive information on the precise influence of the precur-
sory obstacles on the nucleated shear band volume we
fix wSB = fSB at shear band nucleation, where fSB is
a parameter, and suppress minimization in Eq. (9) over
band volume fractions in Type 1 crystals.

3.4 Volume fraction of bands

We assume that only the volume fraction of mobile
bands (Sec. 2.5) can evolve during deformation; the vol-
ume fraction of immobile bands is fixed at the instant
of banding. Since the crystal itself constitutes a closed
system, band volume fractions evolve by material trans-
fer from one band to the other. In order that this occur
we deem it necessary that the band ℓ losing material be
orientationally unstable (Sec. 2.4) under imposed veloc-
ity gradient L(ℓ). If this condition is satisfied, we take
the evolution rate of the band volume fraction to follow:

ẇ(ℓ) = −κ
∂Ẇ def

∂w(ℓ)
, (23)

where ẇ(ℓ) ≤ 0, ℓ = 1 or 2, and κ is a fitting parameter.

4 Comparison with Experiments

We now calculate the substructural evolution of crys-
tals according to Sec. 2 using the hardening model and
phenomenological assumptions of Sec. 3 and compare
against experimental observations of crystals subjected
to rolling or to channel die compression. Throughout,
the sample coordinate system coincides with the orthog-
onal system defined by the rolling (or extrusion), trans-
verse and normal directions (RD-TD-ND). In this coor-
dinate system, we model both rolling and channel-die
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Parameter Reference Value
n Eq. (1) 20
c1 Eq. (20) 0.7
c2 Eq. (22) 1.2
κ Eq. (23) 0.005

r〈k〉 Sec. 2.3 3◦

b1 Sec. 3.1 2
b2 Sec. 3.1 0.4
aiso Sec. 3.2 3 · 10−3

fSB Sec. 3.3 5%

Table 2: Parameters used in the present calcula-
tion. The hardening parameters for Cu in the Cuitiño-
Ortiz [43] model are used without modification and are
not reproduced here.

compression as plane strain deformation with velocity
gradient

[L̄]RD−TD−ND =





1 0 0
0 0 0
0 0 −1



 . (24)

In all calculations only the 〈110〉(111) slip mode is con-
sidered. Schmid-Boas notation [24] is used to identify
individual slip systems.

For purpose of calculation, the imposed deformation
is divided into multiple steps, each involving an ǫvM in-
crement of 0.001

√

4/3. Until the crystal bands, with
the lattice orientation perturbation determined as in
Sec. 2.3 in each step, the minimization problem Eq. (9)
is solved. It is checked if the Chin-Wonsiewicz band-
ing condition (Sec. 2.3) is satisfied, and if the lattice is
orientationally unstable (Sec. 2.4). If both these tests
pass, the crystal is banded, and further deformation fol-
lows the procedure in Sec. 2.5. Slip system hardness and
lattice orientation of the crystal or of its bands are up-
dated at each step. The parameters used in the present
calculations are listed in Table 2.

4.1 Shear banding in a (112)/[1̄1̄1] crystal

An experimentally well studied copper crystal orienta-
tion that shows shear banding under plane strain defor-
mation is the C-orientation ((ND)/[RD] = (112)/[1̄1̄1];
Bunge coordinates (φ1, φ, φ2) = (90, 35.26, 45)◦; see
Fig. 1). Its microstructural and substructural evolu-
tion has been studied by Wagner et al [8] during
rolling and by Jasienski et al [33] during channel-
die compression. Both works report initial orienta-
tion evolution in the crystal toward the D-orientation
((ND)/[RD] = (4 4 11)/[1̄1 1̄1 8]; Bunge coordinates
(90, 27.21, 45)◦). After some strain, shear bands form,
followed by reversion of the matrix orientation back to-
ward C, and rapid evolution of shear band orientation
toward the C′-orientation ((ND)/[RD] = (112)/[111̄];
Bunge (90,−35.26, 45)◦), and beyond. They also find
that the shear bands make angles of 35◦–50◦ with the
rolling plane.
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Figure 2: Evolution of χν , the inclination of the shear
band to the rolling plane with continued deformation of
the banded single crystal.

The orientation of the simulated crystal relative to
the sample coordinate axes is shown in Fig. 1. This fig-
ure also shows the spherical coordinates (θν , φν) used
to describe the orientation of the normal vector ν to the
inter-band boundary. During plane strain deformation,
the crystal is symmetrically oriented so that pairs of slip
systems such as (B2, B4), and (A6, D6) show identical
absolute slip rates (|γ̇B2| = |γ̇B4|, |γ̇A6| = |γ̇D6|, etc). A
standard Taylor calculation with hardening, but with-
out banding reveals that two coplanar slip systems (CP:
B2, B4), and two codirectional slip systems (CD: A6,
D6) are activated. In Eq. (22), the B plane represents
p∗, and because A6 and D6 are cross-slip activated and
all other planes have zero slip rates, Γ̇p∗∗ = 0. Thus,

Γ̇p∗/Γ̇p∗∗ = ∞ so that a dislocation wall parallel to the
B plane must form (Sec. 3.1) in agreement with experi-
mental observation [8]. Also, according to Sec. 3.3 this
crystal cannot deformation band. We assume that the
shear band is a thin domain (Sec. 3.2) and the matrix
is not.

At each step of the calculation with banding, the
computer crystal satisfies the Chin-Wonsiewicz neces-
sary banding condition (Eq. (11)) but remains orien-
tationally stable (Sec. 2.4) until a rolling reduction of
9.5% (ǫvM ≈ 0.11). At this point its lattice orienta-
tion is (90, 33.08, 45)◦ and Ẇ def achieves equal min-
ima at two (θν , φν): (66.9, 0)◦ and (156.9, 0)◦. The
first is orientationally stable, while the second is not
and therefore represents a computational shear banded
state. The calculated shear band forms inclined at
χν = 180◦ − θν = 23.1◦ to the rolling plane (Fig. 1).
The optimum misorientation m̂ is parallel to TD, in
agreement with [8, 33].

It is a priori unknown if the shear band is mobile or
immobile (Sec 2.5). Assuming band mobility, we see
from Fig. 2 that χν increases with deformation reach-
ing χν ≈ 44.4◦ after 27% rolling reduction. The increase
agrees with the experimental observation of Jasienski et
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ND, [112]

RD, [1̄1̄1]

ND

RD
TD
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χν

θν

φν
ν

ν

Figure 1: Initial orientation of the C-oriented crystal relative to the rolling axes. M denotes the matrix and SB
the shear band. The spherical coordinates (θν , φν) specifying the orientation of the normal ν to the inter-band
boundary are also shown.
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Figure 3: (a) Evolution with deformation of the middle
Bunge angle in the matrix, (φM) and in the shear band
(φSB) in an initially C-oriented single crystal. (b) Cal-
culated (111) pole figures before and after 30% rolling
reduction. The pole figures are oriented as in [33, Fig. 3]
for easy comparison.

al [33], who also found χν distributed between 35◦–
50◦. The assumption of band immobility however, ro-
tates the shear band toward alignment with the rolling
plane. We therefore conclude that the shear band must
be mobile.

With further deformation only the middle Bunge co-
ordinates of the matrix and shear band, φM and φSB,
respectively evolve as shown in Fig. 3. It is noted that
our predictions are in excellent agreement with the mea-
surements of Jasienski et al [33]: After 27% rolling

 0

 2

 4

 6
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 10

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

ǫvM

|γ̇
| M, CD

M, CP

SB, CD

SB, CP

CD
CP

Figure 4: Evolution of the slip activity in the copla-
nar (CP) and codirectional (CD) slip systems with von
Mises strain in an initially C-oriented Cu crystal.

reduction, the predicted φM = 34.4◦ agrees well with
the measured matrix orientation distribution centered
at 34◦, and the predicted φSB = 16.7◦ with the mea-
sured shear band orientation distributed between 19.5◦

and 13.3◦.
Fig. 4 shows the calculated evolution of the absolute

slip rates |γ̇| in the coplanar (CP: B2 and B4) and codi-
rectional (CD: A6 and D6) slip systems. Before band-
ing, |γ̇CP| gradually increases and |γ̇CD| decreases. A
dramatic transient slip response develops in the shear
band immediately after banding (0.11 ≤ ǫvM ≤ 0.15).
We believe this to be a calculational artifact induced by
the instantaneous transformation of the homogeneous
computer crystal into a banded crystal, and expect a
softer transient response in the physical crystal accom-
panying a non-instantaneous shear banding transforma-
tion. Outside the transient regime (ǫvM ≥ 0.15) it is
seen that banding has reduced slip activity in the matrix
below that in the monolithic crystal. For ǫvM ≥ 0.25
the CP activity in the shear band dominates all others.
In agreement with the experimental observation [8, 33]
that the shear band deforms much more than the ma-
trix, we find that the computational shear band has
accumulated about five times the von Mises strain as
the matrix after 27% rolling reduction.
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tween C and D, when the crystal is subjected to plane
strain deformation.

Insight into the nature of the deformation in the shear
band at 27% rolling reduction is obtained by examining
the velocity gradient LSB in it, in a coordinate system
aligned with the band (obtained by rotating RD-TD-
ND through χν = −44.4◦ about TD):

[LSB]band =





0.02 0.00 −7.10
0.00 0.00 0.00

−0.99 0.00 −0.02



 . (25)

The large L13
SB indicates that the shear band deforms

predominantly under simple shear parallel to the inter-
band boundary. Note that unlike in [15, 17] we have
not pre-supposed simple shear as the deformation mode
of the shear band; approximate simple shear emerges in
the present calculation as the minimizer of Ẇ def in the
banded crystal (Sec 2.5).

We next turn to the observation that unlike its cop-
per counterpart, an initially C-oriented aluminum crys-
tal subjected to rolling does not shear band [52, 53].
To understand this, we systematically examine the ori-
entational stability of three lattice perturbed (ω = 1◦

about TD) crystals oriented between the C and D ori-
entations with φ = 33◦, 31◦, and 29◦. Fig. 5 shows the
variation of the orientational stability with hardening
anisotropy ℵ = τCD/τCP, assuming infinite critical re-
solved shear stress for the eight slip systems that are
neither CP nor CD. It is seen that in all three cases, a
critical ℵ ≈ 3.2 is required to induce orientational insta-
bility and banding. We believe this critical hardening
anisotropy is never achieved in Al because of its smaller
latent hardening ratio than of Cu [54]. Franciosi [55] has
suggested that the higher stacking fault energy of Al rel-
ative to Cu leads to the lower hardening anisotropy of
Al because, dissociated dislocations being narrower in
Al than in Cu, recombine more readily before passing
through an obstacle.

As experimentally evidenced by the observation that

the shear bands are uniformly distributed in Wagner
et al’s [8] rolled single crystal but are clustered in a
small part of the crystal in Jasienski et al’s [33] channel
die compressed specimen, both of which are nominally
plane strain deformed, the width and spacing of shear
bands are sensitive to the constraints upon the crystal.
We believe that shear band width and spacing are de-
termined by the minimizer of Ẇ acc [30]. Accounting for
this will turn the present local theory into a non-local
one, and we leave this extension to future work.

4.2 Deformation banding in a (001)/[110] crys-
tal

Heye and Sattler [34] observed deformation banding in
an initially (ND)/[RD] = (001)/[110] (Bunge coordi-
nates (−45, 0, 0)◦) copper crystal rolled to 75% reduc-
tion. They found that the crystal divided into two ap-
proximately equal bands with the inter-band boundary
aligned with the rolling plane. With further deforma-
tion they found that the bands rotate toward the C and
C′ orientations.

A standard Taylor calculation with hardening, but
without banding reveals that two pairs of coplanar
slip systems (CP1: C1 and C3, and CP2: B2 and
B4), are activated equally during plane strain defor-
mation. Thus, in Eq. (22), p∗ and p∗∗ interchange-
ably correspond to the B and C crystallographic slip
planes. Γ̇p∗/Γ̇p∗∗ = 1 and therefore dislocation walls
will not form in this crystal (Sec. 3.1). Also, according
to Sec. 3.3 this crystal cannot shear band.

The banding calculation predicts deformation band-
ing at a rolling reduction of 25.2%, or ǫvM ≈ 0.29.
As in Sec. 4.1, although the Chin-Wonsiewicz condi-
tion, Eq. (11) is always satisfied, orientational stability
(Sec. 2.4) prevents banding for ǫvM < 0.29. Unlike in
Sec. 4.1 however, the initial orientation of the crystal re-
mains stable until banding. Each of the four activated
slip systems harden identically. The orientational insta-
bility at ǫvM ≈ 0.29 is induced solely because the orien-
tation perturbation ω becomes large enough to induce
sufficiently different deformations within the bands. At
the instant of banding, the optimal (Eq. (9)) misorien-
tation vector is parallel to the TD, in agreement with
experiment. The optimal volume fraction of each band
is 0.5, and the normal to the inter-band boundary (ν)
is optimally oriented parallel to ND, so that the inter-
band boundary itself coincides with the rolling plane,
again in agreement with experiment.

With either the mobile or immobile boundary as-
sumption, further deformation leaves the inter-band
boundary aligned with the rolling plane in the present
calculation. Since the predictions of both assumptions
coincide, the mobility or immobility of the bands cannot
be determined from these considerations. The experi-
mental observations of Lee and Duggan [4] in copper
and Wert et al [56] in aluminum however suggest that
deformation bands are immobile. The volume fractions
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of the bands are therefore held fixed during the subse-
quent deformation (Sec. 3.4).

After banding, lattice orientations of the bands (in-
dexed by (1) and (2)) evolve along (−90, φ(1), 45)◦ and
(90, φ(2),−135)◦, respectively as shown in Fig. 6. It is
seen that φ(1) = φ(2). The calculated band rotations
agree with those measured by Heye and Sattler [34].

Fig. 7 shows the calculated evolution of the abso-
lute slip rates |γ̇| in both coplanar slip systems (CP1:
C1 and C3, and CP2: B2 and B4) in both defor-
mation bands (DB1 and DB2). Before banding, all
four slip systems considered are identically activated.
A transient response occurs immediately after band-
ing (0.29 ≤ ǫvM ≤ 0.33) wherein slip rates fluctuate
sharply. As in Sec. 4.1, we attribute this to the instan-
taneous introduction of bands into the computer crys-
tal, and expect that the physical crystal will initiate the
band gradually and therefore exhibit a softer transient
response.

Beyond the transient response regime, it is seen that
in the first deformation band (DB1), slip in CP2 (B2
and B4) is increasingly enhanced with deformation, and
that in CP1 (C1 and C3) is increasingly suppressed.
The opposite occurs in deformation band 2 (DB2).
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Figure 7: Evolution of the slip activity in the two copla-
nar slip systems (CP1 and CP2) in both bands (DB1
and DB2) with von Mises strain in the crystal in an
initially (001)/[110] oriented single crystal.

Thus, slip in each band becomes increasingly confined
with deformation to a pair of coplanar systems thereby
reducing the latent hardening in the crystal as a whole.
Unlike in [24, 25] wherein the goal of reducing plastic
work led to reduced latent hardening and hence to band-
ing, the present theory predicts reduced latent harden-
ing in the crystal through banding based on Ẇ def mini-
mization. Also, the new slip state in each band will lead
to the formation of a dislocation wall in the bands par-
allel to the B and C crystallographic planes (Sec. 3.1),
absent in the homogeneously deforming crystal.

The calculated velocity gradient in the bands at 75%
rolling reduction are

[L(1)]RD−TD−ND =





1.00 0.00 1.27
0.00 0.00 0.00

−0.58 0.00 −1.00



 , and

[L(2)]RD−TD−ND =





1.00 0.00 −1.27
0.00 0.00 0.00
0.58 0.00 −1.00



 .

(26)

The +− pattern seen in L13 and L31 above is called
the redundant shear and has been observed experi-
mentally during rolling in a number of crystal orien-
tations [57, 58]. Lee and Duggan [59] have proposed
that redundant shear is imposed by the rolls due to
frictional and geometric effects. Wert [57], using an up-
per bound analysis that modeled rolling deformation as
flow through a converging channel, found that smaller
plastic work is associated with crystal deformation in-
volving redundant shears than that with homogeneous
crystal deformation. The present calculation shows that
driven solely by the tendency to minimize plastic power
(Eq. (19)), the velocity gradient in the bands acquires
the +− pattern in L13 and L31 even under plane strain
deformation (Eq. (24)). This suggests that redundant
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shears are part of the intrinsic crystal response, inde-
pendent of any constraints forced by the rolls.

5 Conclusion

The problem of microstructural and substructural evo-
lution in a crystal is inherently circular: Small disloca-
tion structures determine the state of slip system hard-
ness that govern formation of the much larger bands,
which in turn alter the local deformation fields and
thereby the state of slip system hardness. The present
theory accounts for this circularity. The crystallography
of slip is taken to be the dominant influence at the scale
of the smallest dislocation structures. Phenomenologi-
cal information on the presence or absence of disloca-
tion walls, and slip system hardness (Sec. 3) is fed from
this scale to the scale of the bands, where minimization
of the plastic power Ẇ def (Sec. 2.3) and orientational
instability (Sec. 2.4) determine the banded structure.
It has been shown that the predictions of this approach
agree quantitatively with the experimental observations
in two rolled single crystals: One that forms shear bands
(Sec. 4.1), and the other that forms deformation bands
(Sec. 4.2).
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[30] Mahesh S, Tomé CN, Phil Mag 84 (2004), p. 3517.
[31] Taylor GI, J I Met 62 (1938), p. 307.
[32] Chin GY, Wonsiewicz BC, Trans AIME 245 (1969),

p. 871.
[33] Jasienski Z, Baudin T, Piatkowski A, Penelle R, Scripta

mater 35 (1996), p. 297.
[34] Heye W, Sattler HP, Z Metallkde 62 (1971), p. 386.
[35] Asaro RJ, Needleman A, Acta metall 33 (1985), p. 923.
[36] Canova GR, Fressengeas C, Molinari A, Kocks UF,

Acta Metall 38 (1988), p. 1961.
[37] Chin GY, Mammel WL, Trans AIME 245 (1969),

p. 1211.
[38] Hughes DA, Liu Q, Chrzan DC, Hansen N, Acta mater

45 (1997), p. 105.
[39] Hill R, in: Sneddon IN, Hill R (Eds.), Progress in Solid

Mechanics, 2, Interscience, New York, 1961, pp. 247.
[40] Kelley CT, Iterative Methods for Optimization, SIAM,

Philadelphia, 1999.
[41] Lee CS, Smallman RE, Duggan BJ, Scripta metall

mater 33 (1995), p. 727.
[42] Raabe D, Zhao Z, Park SJ, Roters F, Acta mater 50

(2002), p. 421.
[43] Cuitiño AM, Ortiz M, Modeling Simul Mater Sci Eng

1 (1992), p. 225.
[44] Franciosi P, Zaoui A, Acta metall 30 (1982), p. 1627.
[45] Franciosi P, Zaoui A, Acta metall 30 (1982), p. 2151.
[46] Huang X, Scripta mater 38 (1998), p. 1697.
[47] Jackson PJ, Mater Sci Eng 57 (1983), p. 37
[48] Kawasaki Y, in: K. Oikawa et al (Eds.), Strength of

materials, The Japan Institute of Metals, 1990, p. 187.
[49] Kawasaki Y, Jpn J Appl Phys 18 (1979), p. 1429.
[50] Kawasaki Y, Takeuchi T, Scripta metall 14 (1980),

p. 183.
[51] Lee CS, Duggan BJ, Acta Metall Mater 42 (1994),

p. 857.
[52] Driver JH, Jensen DJ, Hansen N, Acta metall mater 42

(1994), p. 3105.
[53] Godfrey A, Jensen DJ, Hansen N, Acta metall mater

46 (1998), p. 835.
[54] Franciosi P, Berveiller M, Zaoui A, Acta metall 28

(1980), p. 273.
[55] Franciosi P, in: H. J. McQueen et al (Eds.), Strength of

metals and alloys, 7, Pergamon, Oxford, 1986, p. 281.
[56] Wert JA, Kashihara K, Okada T, Huang X, Inoko F,

Phil Mag 85 (2005), p. 1989.
[57] Wert JA, Acta mater 50 (2002), p. 3125.
[58] Wert JA, Liu Q, Hansen N, Acta mater 45 (1997),

p. 2565.
[59] Lee CS, Duggan BJ, Met Trans 22A (1991), p. 2637.

10


