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Abstract—Delineation of the left ventricular cavity, my-
ocardium and right ventricle from cardiac magnetic resonance
images (multi-slice 2D cine MRI) is a common clinical task to es-
tablish diagnosis. The automation of the corresponding tasks has
thus been the subject of intense research over the past decades.
In this paper, we introduce the “Automatic Cardiac Diagnosis
Challenge” dataset (ACDC), the largest publicly-available and
fully-annotated dataset for the purpose of Cardiac MRI (CMR)
assessment. The dataset contains data from 150 multi-equipments
CMRI recordings with reference measurements and classification
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from two medical experts. The overarching objective of this paper
is to measure how far state-of-the-art deep learning methods can
go at assessing CMRI, i.e. segmenting the myocardium and the
two ventricles as well as classifying pathologies. In the wake
of the 2017 MICCAI-ACDC challenge, we report results from
deep learning methods provided by nine research groups for the
segmentation task and four groups for the classification task.
Results show that the best methods faithfully reproduce the
expert analysis, leading to a mean value of 0.97 correlation score
for the automatic extraction of clinical indices and an accuracy of
0.96 for automatic diagnosis. These results clearly open the door
to highly-accurate and fully-automatic analysis of cardiac CMRI.
We also identify scenarios for which deep learning methods are
still failing. Both the dataset and detailed results are publicly
available on-line, while the platform will remain open for new
submissions.

Index Terms—Cardiac segmentation and diagnosis, deep learn-
ing, MRI, left and right ventricles, myocardium.

I. INTRODUCTION

Analysis of cardiac function plays an important role in
clinical cardiology for patient management, disease diagnosis,
risk evaluation, and therapy decision [1], [2], [3]. Thanks to
digital imagery, the assessment of a set of complementary
indices computed from different structures of the heart is
a routine task for cardiac diagnostics. Because of its well-
known capacity for discriminating different types of tissues,
Cardiac MRI (CMR) (built from series of parallel short axis
slices) is considered as the gold standard of cardiac function
analysis through the assessment of the left and right ventricular
ejection fractions (EF) and stroke volumes (SV), the left
ventricle mass and the myocardium thickness. This requires
accurate delineation of the left ventricular endocardium and
epicardium, and of the right ventricular endocardium for both
end diastolic (ED) and end systolic (ES) phase instances. In
clinical practice, semi-automatic segmentation is still a daily
practice because of the lack of accuracy of fully-automatic
cardiac segmentation methods. This leads to time consuming
tasks prone to intra- and inter-observer variability [4].

The difficulties of CMR segmentation have been clearly
identified [5]: i) presence of poor contrast between my-
ocardium and surrounding structures (conversely, there is a
high contrast between blood and the myocardium); ii) bright-
ness heterogeneities in the left ventricular/right ventricular
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cavities due to blood flow; iii) presence of trabeculae and
papillary muscles with intensities similar to the myocardium;
iv) non-homogeneous partial volume effects due to the limited
CMR resolution along the long-axis; v) inherent noise due to
motion artifacts and heart dynamics; vi) shape and intensity
variability of the heart structures across patients and patholo-
gies; vii) presence of banding artifact.

In order to gauge performances of state-of-the-art CMR
segmentation methods, four international challenges (all with
a unique dataset) have been organized over the last decade [6],
[7], [8], [9]. As mentioned in section II, three of those datasets
focus on the left ventricle and one on the right ventricle. Since
three of those challenges were organized before 2012, none of
the participants implemented a deep learning approach. As for
the fourth one, since the dataset only contains the ground-truth
for the ED and ES ventricular volume (and not for the contour)
it is difficult to ascertain which cardiac segmentation method
was the most accurate and where it failed.

In this paper, we propose a new dataset called ACDC
(Automatic Cardiac Diagnosis Challenge) which led to the
organization of an international MICCAI challenge in 2017.
The richness of the dataset as well as its tight bound to
every-day clinical issues has the potential to enable machine
learning methods to fully analyze cardiac MRI data. ACDC
has a larger scope than previous cardiac datasets as it includes
manual expert segmentation of the right ventricle (RV) and
left ventricle (LV) cavities, and the myocardium (epicardial
contour more specifically). ACDC also contains patients from
five different medical groups namely : dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), myocardial in-
farction with altered left ventricular ejection fraction (MINF),
abnormal right ventricle (ARV) and patients without cardiac
disease (NOR).

The overarching objective of this paper is to provide an-
swers to the following four questions :

1) How accurate recently proposed segmentation methods
are at delineating the LV, RV and myocardium given
clinical MR images?

2) How accurate recently proposed classification methods
are at predicting the pathology of a patient given clinical
MR images?

3) When methods fail, where do they fail?
4) How far are we from ”solving” the problem of automatic

CMRI analysis?
With those questions in mind, we first go through a detailed

description of the previous MRI cardiac datasets as well
as the CMRI segmentation methods in section II. We then
describe our evaluation framework as well as the evaluated
deep learning architectures in sections III and IV. We analyze
the results obtained during the MICCAI-ACDC challenge in
section V and finally draw conclusions in sections VI and VII.

II. PREVIOUS WORKS

Previous MRI cardiac datasets

Four large datasets of clinical CMRI data have been broadly
accepted by the community in the last decade. These datasets

were released in conjunction with an international challenge
allowing the organizers to benchmark state-of-the-art methods.

The Sunnybrook Cardiac MR Left Ventricle Segmen-
tation challenge - MICCAI 20091 provides a database of
45 cardiac cine-MR images from four different pathological
groups namely: heart failure with ischemia, heart failure
without ischemia, hypertrophic cardiomyopathy, and normal
subjects. The data is provided with two manually-drawn con-
tours, one for the endocardium and one for the epicardium [6].
Although the database is still publicly available, neither col-
lated results nor comparative study have been published thus
reducing the impact of this event. However, recent papers [5],
[10], [11] reported results from several automatic and semi-
automatic segmentation methods published since the 2009
challenge. According to those results, the top performing
methods (many of which being only focused on the endo-
cardium segmentation) report Dice scores between 0.90 and
0.94 for the endocardium and/or the epicardium and an average
perpendicular distance of less than 2.0 mm and an average 2D
Hausdorff distance between 3.0 and 5.0 mm.

The LV Segmentation Dataset and Challenge, MICCAI-
STACOM 20112 focuses on the comparison of LV segmenta-
tion methods [12]. The database is made of CMR acquisitions
from 200 patients with coronary artery disease and prior
myocardial infarction (100 for training and 100 for testing).
In this study, the authors introduced the concept of objective
ground truth based on the evidence from the contribution of
several raters. In particular, ground truths computed for the 100
patients of the testing set were generated from an Expectation-
Maximization framework (the STAPLE algorithm) [13] using
the results of two fully-automated methods (automated raters)
and three semi-automated approaches with manual input (man-
ual raters). No 100% manually annotated ground truth were
involved in this study. From the derived ground truths, the best
results in terms of segmentation accuracy were obtained by a
guide-point modeling technique (manual rater) which obtained
an average Jaccard score of 0.84 [14].

The Right Ventricle Segmentation Dataset - MICCAI
20123 aims at comparing RV segmentation methods based on
a set of 48 cardiac cine-MR data with contours drawn by
one cardiac radiologist (16 for training, 32 for testing) [8].
Three fully-automatic and four semi-automatic methods were
evaluated through this challenge. Back in 2012, the outcome
of the challenge revealed that the best scores were obtained
by semi-automatic methods like the graph-cut method by
Grosgeorge et al. [15] which reached an average Dice score
of 0.78 and an average 2D Hausdorff distance of 8.62. In a
recent publication, Phi Vu Tran [16] showed how a fine-tuned
fully-convolutional neural network [17] can out-perform every
semi-automatic method with an average Dice score of 0.85.

The 2015 Kaggle Second Annual Data Science Bowl4
is a challenge for which more than 190 teams competed to
win the $200,000 grand price. The goal of this event was
to automatically measure ED and ES volumes from CMR.

1http://smial.sri.utoronto.ca/LV Challenge/Home.html
2www.cardiacatlas.org/challenges/lv-segmentation-challenge/
3www.litislab.fr/?projet=1rvsc
4www.kaggle.com/c/second-annual-data-science-bowl
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TABLE I
SUMMARY OF THE FULL SET OF EXISTING CARDIAC MRI DATASETS WHICH ARE PUBLICLY AVAILABLE FOR COMPARISON PURPOSES.

CMRI datasets

Name Year
Nb Subjects Ground truth Active
train test LV RV Myo Pathology website

Sunnybrook 2009 45 — 4 8 4 4 8
STACOM 2011 100 100 4 8 4 8 8
MICCAI RV 2012 16 32 8 4 8 8 8
Kaggle 2015 500 200 8 8 8 8 8
ACDC 2017 100 50 4 4 4 4 4

Challengers were given a database composed of 500 patients
for training and 200 patients for testing. The training images
came only with the ED and ES reference volumes and not
a manually segmented ground truth as for the other three
datasets. The outcome of the challenge revealed that the top-
performing methods relied on deep learning technologies, in
particular fully convolutional networks (fCNN) [17] and U-
Net [18]. Unfortunately, no summary paper was provided in
the wake of this challenge.

Table I summaries the MRI cardiac datasets mentioned
above. Let us also mention that other fully-annotated cardiac
datasets have been released such as HVSMR 20165 and the
Multi-Modality Whole Heart Segmentation dataset6. Although
interesting, these datasets contain images that a clinically
atypical, a topic that goes beyond the focus of this study.
Furthermore, without being bound to a challenge, the UK
Biobank [19] corresponds to the largest existing CMR database
which could be used to train and test deep learning methods
whenever the manual annotations of these images will be
rendered public. However, one limit of this database is that
it is not free, which inevitably limits its access by research
teams, and thus does not correspond to open science initiatives
such as challenges.

Non-deep learning methods
In parallel to those challenges, Petitjean et al. proposed

in 2011 a complete review of segmentation methods for
delineating the LV and/or the RV in short axis cardiac MR im-
ages [20]. In this study, the authors listed the results published
in more than 70 peer-reviewed publications. As for the four
challenges cited above, the reported methods can be divided
in two main categories: weak prior and strong prior methods.
The first group involves weak assumptions such as spatial,
intensity or anatomical information. It includes image-based
techniques (threshold, dynamic programming) [21], pixel clas-
sification methods (clustering, Gaussian mixture model fit-
ting) [22], deformable models (active contour, level-set) [23]
and graph-based approaches (graph-cut) [24]. The second
group uses methods with strong prior including shape prior
based deformable models [5], active shape and appearance
models [25] and atlas based methods [26], all requiring a
training dataset with manual annotations. Although this huge
work provides a complete picture of the performance of
the state-of-the-art methods in LV/RV segmentation, it does

5http://segchd.csail.mit.edu/
6http://stacom2017.cardiacatlas.org/

benchmark these techniques with a unique dataset. Such
comparison thus remains a glaring issue in our community.

Deep learning methods
To our knowledge, before 2013 no deep learning techniques

was used to analyze CMRI. However, a drastic change oc-
curred in 2015 during the Kaggle Second Annual Data Science
Bowl during which the undeniable power of deep learning
methods was revealed to the community. Since then, a dozen
deep learning papers have been published on the topic of
CMRI analysis. Most papers used 2D convolutional neural
networks (CNNs) and analyzed the MRI data slice by slice.

Three papers used deep learning framework to extract
relevant features for segmentation. Emad et al. [27] used a
patch-wise CNN to localize the LV in CMRI slices. Kong et
al. [28] developed a temporal regression framework to identify
end-diastolic and end-systolic instances from the cardiac cycle
by integrating a 2D CNN with a recurrent neural network
(RNN). The CNN was used to encode the spatial information
while the RNN was used to decode the temporal information.
Finally Zhang et al. [29] used a simple CNN to automatically
detect missing slices (apical and basal) in cardiac exams to
assess the quality of MRI acquisitions.

Four papers used deep learning methods combined with
classical cardiac segmentation tools. Rupprecht et al. [30]
integrated a patch-based CNN into a semi-automatic active
contour (a snake) to segment cardiac structures. Ngo et al. [31]
used a deep belief network (DBN) to accurately initialize and
guide a level-set model to segment the left ventricle. Yang
et al. [32] developed a combined approach between CNN
and multi-atlas to perform LV segmentation. In particular, a
deep architecture was trained to learn deep features achieving
optimal performance for the label fusion operation classically
involved in multi-atlas segmentation. Alternatively, Avendi et
al. [10] proposed a combined deep-learning and deformable-
model approach to automatically segment the left ventricle.
The method works as follows: i) a simple CNN locates and
crops the LV; ii) a stack of autoencoders pre-segment the
LV shape; iii) the pre-segmented shape is refined with a
deformable model. Although the authors report almost perfect
results on Sunnybrook 2009, it is not clear how their method
generalizes to more than one cardiac region.

Finally, three papers used standalone deep learning tech-
niques to segment cardiac structures from CMR data. Poudel
et al. [33] proposed a recurrent fully-convolutional network
(RFCN) that learns image representations from the full stack
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of 2D slices. The derived architecture allows leveraging inter-
slice spatial dependences through internal memory units. Tran
et al. [16] developed a deep fully convolutional neural network
architecture to segment both LV and RV structures. Finally,
Oktay et al. [34] proposed an image super-resolution approach
based on a residual convolutional neural network model. Their
key idea is to reconstruct high resolution 3D volumes from 2D
image stacks for more accurate image analysis.

For more details on deep learning methods applied to
medical image analysis (including cardiac MRI segmentation)
please refer to Litjens et al. [35] and Havaei et al. [36].

III. EVALUATION FRAMEWORK

A. CMR data

1) Patient selection: The ACDC dataset was created from
real clinical exams acquired at the University Hospital of Dijon
(France). Our dataset covers several well-defined pathologies
with enough cases to properly train machine learning methods
and clearly assess the variability of the main physiological
parameters obtained from cine-MRI (in particular diastolic
volume and ejection fraction). The targeted population is
composed of 150 patients evenly divided into 5 classes with
well-defined characteristics according to physiological param-
eters. These examinations were initially classified according to
medical reports. Patients with ambiguous clinical indices were
excluded from this study. The different subgroups are given
hereunder:

• NOR: Examination with normal cardiac anatomy and
function. The ejection fraction is greater than 50%, the
wall thickness in diastole is lower than 12 mm, the
LV diastolic volume is below 90 mL/m2 for men and
80 mL/m2 for women [37]. The RV is normal for
each patient (RV volume less than 100 mL/m2 and RV
ejection fraction above 40%). The visual analysis of the
segmental LV and RV myocardial contraction is normal.

• MINF: Patients with a systolic heart failure with infarc-
tion. Subjects have an ejection fraction below 40% and
abnormal myocardial contractions. Some subjects have a
high diastolic LV volume due to a remodeling of the LV
to compensate for the myocardial infarction.

• DCM: Patients with dilated cardiomyopathy have an
ejection fraction below 40%, a LV volume greater than
100 mL/m2 and a wall thickness in diastole smaller than
12 mm. As a consequence of dilated LV, some patients
of this category have a dilated RV and/or a high LV mass.

• HCM: Patients with hypertrophic cardiomyopathy, i.e. a
normal cardiac function (ejection fraction greater than
55%) but with myocardial segments thicker than 15 mm
in diastole. In this category, patients can present abnormal
cardiac mass indices with values above 110 g/m2.

• ARV: Patients with abnormal right ventricle have a RV
volume greater than 110 mL/m2 for men, and greater
than 100 mL/m2 for women [38], or/and a RV ejection
fraction below 40%. Almost every subject in this sub-
group has a normal LV.

2) Acquisition protocol: Acquisitions were obtained over a
6 year period with two MRI scanners of different magnetic
strengths (1.5 T - Siemens Area, Siemens Medical Solutions,
Germany and 3.0 T - Siemens Trio Tim, Siemens Medical
Solutions, Germany). Cine MR images were acquired with a
conventional SSFP sequence in breath hold with a retrospec-
tive or prospective gating [39]. After the acquisitions of long
axis slices, a series of short-axis slices covering the LV from
the base to the apex was acquired, with a slice thickness from 5
mm to 10 mm (in general 5 mm) and sometimes an inter-slice
gap of 5 mm. The spatial resolution varies from 1.34 to 1.68
mm2/pixel. Depending on the patient, 28 to 40 volumes were
acquired to cover completely (retrospective gating) or partially
(prospective gating) one cardiac cycle. In the latter case,
only 5 to 10% of the end of the cardiac cycle was omitted.
The full dataset was acquired in clinical routine, leading to
natural variability in the image quality (intrinsic noise, patient
movement, banding artifacts, MRI low-frequency intensity
fluctuation, etc.), variable field-of-view and integral or almost
integral covering of the LV. Finally, to be in compliance with
previous cardiac MRI segmentation challenges, the long axis
slices were not provided. Even though the use of long axis
slices could provide extra information about the base, the apex
and the longitudinal motion of the ventricles, the analysis
of short and long-axis slices are generally independent and
outside the scope of this project.

3) Training and testing dataset: The data for each subject
was converted to a general 4D image representation format
(nifti) without loss of resolution. ED and ES frames were
identified based on the motion of the mitral valve from the
long axis orientation by a single expert. Both training and
testing data contain whole short-axis slices. The identification
of the most basal and apical slices is also not provided, while
the diastolic and systolic phases are indicated. In order for
challengers to normalize the physiological parameters (mainly
the LV and RV volumes and the MYO mass) with the body
surface area (BSA), the weight and height of each patient
are included in the dataset. For instance, the BSA can be
calculated from the formula of Dubois and Dubois [40], i.e.
BSA = 0.007184 · (weight 0.425 · height 0.725) and normal-
ized parameters can be computed by simply dividing their
values with the corresponding BSA. The training database is
composed of 100 patients, i.e. 20 patients for each group.
For all these data, the corresponding manual references as
well as the patient group are provided. The testing dataset
is composed of 50 patients, i.e. 10 patients per group. The
manual references and group labels of the testing data are
kept private.

B. Reference segmentation and contouring protocol
The expert references are manually-drawn 3D volumes of

the LV and RV cavities as well as the myocardium, both at
the ED and ES gates. The epicardial border of the RV was not
considered because its accurate position next to the septum is
difficult to establish, and the myocardial thickness of the RV is
of the same order of magnitude than the spatial resolution. The
contours were drawn and double-checked by two independent
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experts (10 and 20 years of experience) who had to reach
consensus in case of discordance.

The following annotation rules were retained: the LV and
RV must be completely covered, the papillary muscle are
included into the cavity and there is no interpolation of
the muscle at the base of the LV (the contours follow the
limit defined by the aortic valve). The main difficulty when
annotating RV corresponds to correctly localize the pulmonary
infundibulum area. This area must not be included into the RV
annotation and a clear separation must be seen between the RV
cavity and the root of the pulmonary artery. Due to the systolic
shortening of the RV, the first basal slice is not mandatory
being the same in diastole and systole. Another difficulty is
to accurately separate the RV from the right atrium on the
systolic image. As such, we defined the RV as the region on the
right of heart with a significant contraction between ventricular
diastole and systole, i.e. the surface area of the RV must be
higher in ventricular diastole than in ventricular systole. For
an easier understanding, illustrations of the annotation rules
are provided in the supplementary materials (available in the
supplementary files /multimedia tab).

The ground truth label images were stored in nifti format.
The label values vary from 0 to 3 and represent voxels
belonging to the background (0), the RV cavity (1), the
myocardium (2) and the LV cavity (3).

C. Evaluation metrics

In order to evaluate the tested methods in a fair and
reproducible manner, we customized a dedicated Girder7on-
line platform8. This platform is now available and will be
maintained and kept open as long as the data remains relevant
for clinical research. Based to this platform, the performance
of state-of-the-art methods are compared both from a geo-
metrical and a clinical standpoint. This implies the use of a
complementary set of metrics as described hereunder [41].

1) Geometrical metrics: In order to measure the accuracy
of the segmentation output (LV endocardium, myocardium or
RV endocardium) provided by a given method, the Dice metric
and the 3D Hausdorff distance were used.

Dice similarity index: The Dice similarity index is de-
fined as D = 2 (|Vuser ∩ Vref |) / (|Vuser|+ |Vref |) and is a
measure of overlap between the segmented volume Vuser

extracted from a method and the corresponding reference
volume Vref . The Dice index gives a measurement value
between 0 (no overlap) and 1 (full overlap).

Hausdorff surface distance (dH ): The Hausdorff distance
dH , measures the local maximum distance between the two
surfaces Suser and Sref . This is carried out efficiently using
the Proximity Query Package (PQP) [42] which we slightly
modified to compute point-to-triangle distances. Moreover, in
order to minimize the difference between sampling densities
of Suser and Sref , we apply a linear subdivision operator
to the surface containing the lowest number of vertices. As
opposed to several MRI cardiac segmentation papers which

7https://girder.readthedocs.io/en/latest/
8http://acdc.creatis.insa-lyon.fr/

report 2D Hausdorff distances [5], [10], [11], we report the
3D dH , which allows an intrinsic management of the missing
segmentation problem on the end slices.

2) Clinical performance: We also implemented three in-
dices for the clinical parameters, namely the correlation (corr),
the bias and the standard deviation (std) values. These three
metrics are computed from the measurements of: i) the ED
volumes (LVEDV and RVEDV expressed in mL/m2 for the
LV and RV, respectively); ii) the ejection fractions (LVEF and
RVEF expressed in percent for the LV and RV, respectively);
iii) the myocardium mass (MYMass expressed in g/m2 and
calculated in diastole). The combination of the bias and
standard deviation also provides useful information on the
corresponding limit of agreement values.

Let us mention that these geometrical and clinical metrics
are complementary in the sense that a good score on one metric
does not inevitably imply a good score on other metrics. This
property is fundamentally important to prevent our system
from unexpectedly favoring some methods over others. For
instance, a low EF error does not always mean a good
delineation of the ED and ES ventricle since EF relies on
the difference between the ED and ES volumes. As such, a
method that would systematically over- or under-estimate the
size of a ventricle in the same order at both ED and ES would
potentially have a low EF bias, a low mean average error and
a high EF correlation, but at the same time a low Dice score
and a large Hausdorff distance.

3) Classification performance: For the classification con-
text, a prediction accuracy measure was provided. This accu-
racy was calculated for the whole examinations of the testing
database, and also per disease. Confusion matrix was created
in order to highlight the results.

D. MICCAI 2017 framework

The evaluation framework was launched during the ”Auto-
matic Cardiac Diagnosis Challenge (ACDC)” workshop held
in conjunction with the 20th International Conference on Med-
ical Image Computing and Computer Assisted Intervention
(MICCAI), on September 10th, 2017 in Quebec City, Canada.
After having publicly invited people to participate to this
challenge, 106 accounts were created on the challenge website.
Ten teams uploaded meaningful results within the allotted time
for the segmentation contest, while 4 teams participated in the
diagnosis contest.

IV. EVALUATED ARCHITECTURES

In this section, we describe the different architectures in-
volved in the segmentation contest as well as the methods
proposed for the classification contest.

A. Architectures for cardiac multi-structure segmentation

A summary of the ten architectures involved in this study is
provided in Table II. Nine methods implemented a deep convo-
lutional architecture, most of which a U-Net like networks [18]
analyzing the 3D data slice by slice. The only exception is
the method by Tziritas and Grinias [49] which implemented a
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TABLE II
OVERVIEW OF METHODS EVALUATED DURING THE ACDC CHALLENGE.

Reference * Contest Method Remarks

Baumgartner et al. [43] S 2D U-Net Tested several architectures, the best one being a 2D U-Net with a cross-entropy loss
Isensee et al. [44] S 2D+3D U-Net Ensemble of 2D and 3D U-Net architectures with a Dice loss
Jang et al. [45] S 2D M-Net Use of a weighted cross-entropy loss function
Khened et al. [46] S Dense U-Net 2D U-Net with dense blocks and an inception first layer
Patravali et al. [47] S 2D U-Net Tested several architectures, the best one being a 2D U-Net with a Dice loss
Rohé et al. [48] S SVF-Net Multi-atlas strategy where the registration module is realized using an encoder-decoder network
Tziritas and Grinias [49] S Levelset+MRF Chan-Vese levelset followed by graph cut and a B-Spline fitting to smooth out results
Wolterink et al. [50] S Dilated CNN Feed-forward CNN but with dilated convolution operations
Yang et al. [51] S 3D U-Net Use of 3D U-Net but with residual connections instead of the usual concatenation operator
Zotti et al. [52] S 2D Grid-Net Use of a Grid-Net architecture with an automatically-registered shape prior

Cetin et al. [53] C SVM Use of physiological and radiomic (shape, intensity and texture) features
Isensee et al. [44] C RF Extract a series of instant and dynamic features; use an ensemble of 50 multilayer perceptrons
Khened et al. [46] C RF Extract 11 features from seg. results + patient height/weight; trained a 100-trees RF classifier
Wolterink et al. [50] C RF Extract 14 features from seg. results + patient height/weight; trained a 1000-trees RF classifier

* S: Segmentation contest; C: Classification contest; SVM: Support Vector Machine; RF: Random Forest; MRF: Markov Random Field.

Chan-Vese level-set method followed by a MRF graph cut
segmentation method and spline fitting to smooth out the
resulting boundaries.

Four papers re-used the U-Net architecture. Baumgartner
et al. [43] tested the U-Net and the FCN architectures with
various hyper parameters. They also tested the impact of
using 2D and 3D convolution layers as well as a training
Dice loss versus a cross-entropy loss. Their best architecture
ended up being a U-Net with 2D convolution layers trained
with a cross-entropy loss. Isensee et al. [44] implemented an
ensemble of 2D and 3D U-Net architectures (with residual
connections along the upsampling layers). Concerning the 3D
network, due to large inter slice gap on the input images,
pooling and upscaling operations are carried out only in the
short axis plane. Moreover, due to memory requirements,
the 3D network involves a smaller number of feature maps.
Both networks were trained with a Dice loss. Similar to
Baumgartner’ study, Patravali et al. [47] tested a 2D and 3D
U-Net trained with different Dice and cross entropy losses.
From their experiments, the best performing architecture was
a 2D U-Net with a Dice loss. Finally, Yang et al. [51]
implemented a 3D U-Net but with residual connections instead
of the usual concatenation operator. They also used pre-trained
weights for the downsampling path using the C3D network
known to work well on video classification tasks [54]. Their
network was trained with a multi-class Dice loss.

Four papers used a modified version of the U-Net. Jang
et al. [45] implemented a ”M-Net” [55] architecture whose
main difference with U-Net resides in the feature maps of
the decoding layers which are concatenated with those of the
previous layer. The corresponding network was trained with a
weighted cross-entropy loss. Khened et al. [46] implemented
a dense U-Net. Their method starts by finding the region
of interest with a Fourier transform followed by a Canny
edge detector on the first harmonic image and compute an
approximate radius and center of the LV with a circular Hough
transform on the edge map previously generated. They then
use a U-Net with dense blocks instead of basic convolution
block to make the system lighter. The first layer of this

network also corresponds to an inception layer. The system
was trained with a sum of Dice and cross-entropy losses.
Rohé et al. [48] developed a multi-atlas algorithm that first
registers a target image with all images in the training dataset.
The registered label fields are then merged with a soft fusion
method using pixel-wise confidence measures. The registration
module implements an encoder-decoder network called SVF-
Net [56]. Finally, Zotti et al. [52] implemented a ”Grid Net”
architecture which corresponds to a U-Net with convolutional
layers along the skip connections. The architecture also reg-
isters a shape prior which is used as additional features map
before performing the final decision. The model was trained
with a four term loss function.

Wolterink et al. [50] is the only team that implemented a
CNN without an encoder-decoder architecture. Instead, they
used a sequence of convolutional layers with increasing levels
of kernel dilation to ensure that sufficient image context was
used for each pixel’s label prediction. This CNN was fed
simultaneously with spatially corresponding ED and ES 2D
slices while the output of the network was split in two, one
softmax for ED and one for ES.

B. Solutions for automatic cardiac diagnosis

Three participants of the segmentation challenge used their
segmentation result to extract features for cardiac diagnosis.
Isensee et al. [44] extracted a series of instants and dynamic
features from the segmentation maps and used an ensemble
of 50 multilayer perceptrons (MLP) and a random forest to
perform classification. Khened et al. [46] used 11 features, 9
derived from their segmentation map in addition to the patient
weight and height. From those features, they trained a 100-
trees random forest classifier. Wolterink et al. [50] extracted
14 features (12 from the segmentation maps + patient weight
and height) and used a five-class random forest classifier with
1,000 decision trees.

Cetin et al. [53] were the only one to involved a semi-
automatic segmentation method to manually extract the con-
tours of the cardiac structures. Based on those contours,
they computed 567 features including physiological features
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TABLE III
SEGMENTATION ACCURACY OF THE 10 EVALUATED METHODS ON THE TESTING DATASET. RED IS THE BEST METHOD, AND BLUE ARE THE METHODS

WITHIN THE RANGE OF AGREEMENT (DICE INDEX OF 0.02 AND HAUSDORFF DISTANCE OF 2.26 MM FROM THE BEST).

Methods *

ED ES
LV RV Myo LV RV Myo

D dH D dH D dH D dH D dH D dH

val. mm val. mm val. mm val. mm val. mm val. mm

Isensee et al. [44] 0.968 7.4 0.946 10.1 0.902 8.7 0.931 6.9 0.899 12.2 0.919 8.7
Baumgartner et al. [43] 0.963 6.5 0.932 12.7 0.892 8.7 0.911 9.2 0.883 14.7 0.901 10.6
Jang et al. [45] 0.959 7.7 0.929 12.9 0.875 9.9 0.921 7.1 0.885 11.8 0.895 8.9
Zotti et al. [52] 0.957 6.6 0.941 10.3 0.884 8.7 0.905 8.7 0.882 14.1 0.896 9.3
Khened et al. [46] 0.964 8.1 0.935 14.0 0.889 9.8 0.917 9.0 0.879 13.9 0.898 12.6
Wolterink et al. [50] 0.961 7.5 0.928 11.9 0.875 11.1 0.918 9.6 0.872 13.4 0.894 10.7
Jain et al. [47] 0.955 8.2 0.911 13.5 0.882 9.8 0.885 10.9 0.819 18.7 0.897 11.3
Rohé et al. [48] 0.957 7.5 0.916 14.1 0.867 11.5 0.900 10.8 0.845 15.9 0.869 13.0
Tziritas-Grinias [49] 0.948 8.9 0.863 21.0 0.794 12.6 0.865 11.6 0.743 25.7 0.801 14.8
Yang et al. [51] 0.864 47.9 0.789 30.3 N/A N/A 0.775 53.1 0.770 31.1 N/A N/A

* ED:End diastole; ES: End systole; LV: Endocardial contour of the left ventricle; RV: Endocardial contour of the right ventricle;
Myo: Epicardial contour of the left ventricle (myocardium); D: Dice Index; dH: Hausdorff distance.

TABLE IV
CLINICAL METRICS FOR THE 10 EVALUATED METHODS ON THE TESTING DATASET. RED IS THE BEST METHOD, AND BLUE ARE THE METHODS WITHIN

A P-VALUE LARGER THAN 0.05 ACCORDING TO BIAS AND STD MEASUREMENTS.

Methods *
LVEDV LVEF RVEDV RVEF MYMass

corr bias±σ mae corr bias±σ mae corr bias±σ mae corr bias±σ mae corr bias±σ mae
val. ml. ml. val. % % val. ml. ml. val. % % val. g. g.

Khened et al. [46] 0.997 0.6 ± 5.5 4.2 0.989 -0.5 ± 3.4 2.5 0.982 -2.9 ± 12.6 8.4 0.858 -2.2 ± 6.9 5.3 0.990 -2.9 ± 7.5 6.3
Isensee et al. [44] 0.997 2.7±5.7 5.1 0.991 0.2 ± 3.1 2.1 0.988 4.4±10.8 7.9 0.901 -2.7 ± 6.2 4.7 0.989 -4.8 ± 7.6 7.3
Zotti et al. [52] 0.997 9.6±6.4 10.3 0.987 -1.2 ± 3.6 2.7 0.991 -3.7 ± 9.2 7.4 0.872 -2.2 ± 6.8 5.4 0.984 -12.4±9.0 13.1
Jain et al. [47] 0.997 9.9±6.7 10.8 0.971 1.7±5.5 4.1 0.945 5.6±22.2 15.0 0.791 6.8±8.1 8.3 0.989 11.6±8.1 11.9
Wolterink et al. [50] 0.993 3.0±8.7 6.8 0.988 -0.5 ± 3.4 2.5 0.980 3.6 ± 15.2 10.9 0.852 -4.6±6.9 6.6 0.963 -1.0 ± 14.6 10.0
Jang et al. [45] 0.993 -0.4 ± 8.7 6.0 0.989 -0.3 ± 3.3 2.3 0.986 -10.8±11.6 12.1 0.793 -3.2 ± 8.3 6.3 0.968 11.5±12.9 14.1
Baumgartner et al. [43] 0.995 1.4 ± 7.6 6.1 0.988 0.6 ± 3.4 2.6 0.977 -2.3 ± 15.1 11.1 0.851 1.2 ± 7.3 5.7 0.982 -6.9±9.8 9.8
Rohé et al. [48] 0.993 4.2±8.6 7.5 0.989 -0.1 ± 3.2 2.6 0.983 7.3±13.4 11.7 0.781 -0.7 ± 9.9 7.8 0.967 -3.4 ± 13.3 10.3
Tziritas-Grinias [49] 0.992 2.0 ± 11.7 8.5 0.975 -1.6 ± 5.0 4.3 0.930 18.6±25.4 24.8 0.758 -0.5 ± 9.1 7.1 0.942 -28.9±28.0 30.3
Yang et al. [51] 0.894 12.2±32.0 27.5 0.926 1.5 ± 8.7 6.1 0.789 47.3±41.9 48.7 0.576 8.8±23.2 15.7 N/A N/A N/A

* LVEDV: End diastolic left ventricular volume; LVEF: Left ventricular ejection fraction; RVEDV: End diastolic right ventricular volume;
RVEF: Right ventricular ejection fraction; MYMass: Myocardial mass in diastole; mae: mean absolute error

(e.g. height and weight) and radiomic features such as shape-
based features, intensity statistics, and various texture features.
To prevent their method from overfitting, they selected the
most discriminative features and used SVM for classification.

V. RESULTS

A. Segmentation Challenge

For a detailed analysis of the results, a set of segmentation
outputs are provided in the supplementary materials (available
in the supplementary files /multimedia tab). This should help
better assess the quality of the best approaches. Table III
shows the segmentation testing accuracy (50 patients) for all
10 algorithms. The red values correspond to the best scores for
each metric while the blue values correspond to the methods
that are one pixel away from the top method. We use this color
code to underline the closeness between the involved methods.
This one-pixel criterion is a range of agreement of 2.3 mm
for the Hausdorff distance (the maximum in-plane diagonal
distance between two pixels:

√
(1.662) ∗ 2) and 0.02 for the

Dice metric (the average Dice score between the segmentation

map of a method and the same segmentation map dilated or
eroded by 1 pixel). This one pixel criterion comes from the
fact that the two experts gave themselves a one pixel error
margin such that two annotations were considered identical
when their 2D Hausdorff distance was smaller or equal than
one pixel.

From these results, one can see that the 2D-3D U-Net
ensemble model proposed by Isensee et al. [44] is overall
the top performing method (the corresponding code is publicly
available through the following link9). This approach is closely
followed by other methods which are less than one pixel away
from it, especially for the LV and RV at ED. For instance,
Baumgartner et al., Jang et al., Zotti et al., and Khened et
al. are within the range of agreement of the top performing
method for 9 of the 12 metrics. As for the none deep-learning
method by Tziritas and Grinias, it is relatively far away from
the top, especially for the RV and the MYO.

Table IV contains the clinical metrics for all 10 methods.
As for the segmentation part, red values correspond to the best

9https://github.com/MIC-DKFZ/ACDC2017
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TABLE V
PERCENTAGE OF PATIENTS WITH AN EF ERROR LOWER THAN 5%.

Methods LV RV

Isensee et al. [44] 92 % 68%
Jang et al. [45] 88 % 60%
Rohe et al. [48] 88 % 34%
Zotti et al. [52] 84 % 60%

Khened et al. [46] 84 % 56%
Baumgartner et al. [43] 84 % 54%

Wolterink et al. [50] 80 % 38%
Jain et al. [47] 68 % 54%

Tziritas-Grinias [49] 66 % 38%
Yang et al. [51] 58 % 32%

TABLE VI
RESULTS ON THE CLASSIFICATION CHALLENGE.

Methods Accuracy
Authors Architectures

Khened et al. [46] Random Forest 0.96
Cetin et al. [53] SVM 0.92

Isensee et al. [44] Random Forest 0.92
Wolterink et al. [50] Random Forest 0.86

scores for each metric. Blue values correspond to the methods
with a p-value larger than 5% compared to the best method
(we used an unequal variances two-sample t-test).

For the clinical indices, Khened et al. [46] globally outper-
forms the other approaches with 14 metrics out of 20 close
to the top performing method (i.e. red and blue metrics). In
terms of correlation metrics, most of the methods obtained
highly accurate results with values above 0.96 for the volumes.
Methods also get good LVEF results with high correlation
scores, a bias close to zero (0.8% on average), a small mean
absolute error (3.2% on average) and small standard deviations
(4.3%). The most difficult clinical metric to estimate is the EF
of the RV with a correlation score of 0.9 for the best method.

A joint analysis of Table III and Table IV reveals that
results on the myocardium (especially at ES) are those that
vary the most. This may be partially explained by the fact
that an accurate myocardium segmentation implies the precise
delineation of two walls instead of one for the LV and RV.
Methods also struggle with the RV. The RV often has the
highest Hausdorff distances, the lowest Dice scores, the lowest
correlation values, and the largest biases. To further underline
this observation, we recorded in Table V the percentage of
patients for which the predicted EF is less than 5% away from
the ground-truth (5% is often considered as an acceptable error
margin [57]). While the top six methods accurately predict the
LV ejection fraction for ≈ 87% of the patients, that number
drastically goes down to ≈ 59% for the RV.

B. Classification Challenge

Table VI presents an overview of the classification perfor-
mance of the 4 evaluated methods. Due to the small number
of samples (50 patients), the scores have to be considered with
care since a miss-classification causes an accuracy drop of 2%.
From this table, one can see that Khened et al. [46] obtained
nearly perfect results with 48 patients correctly classified. The

Fig. 1. Confusion matrix of the winner of the classification challenge [46].

confusion matrix of this approach is shown in Fig. 1. Please
note that the best approach is closely followed by the next two
methods which obtained an accuracy of 92%.

Let us mention that although MINF and DCM are visually
similar, MINF implies a local lack of myocardial contraction
as opposed to DCM. Moreover, for DCM, the LV must exceeds
100 mL/m2. This is why machine learning methods have been
able to successfully differentiate these pathologies.

C. Discussion

1) How far are we from solving the CMRI analysis problem?
Automatic classification results (healthy subjects and patients
with 4 different pathologies), showed that the best methods
are very close to each other with an accuracy above 92%.
Although these observations have to be validated on more
patients, it appears from this study that well designed machine
learning techniques can reach near perfect classification scores.

However, conclusions are not so straightforward for the
segmentation task. While results obtained on the LV are
competitive, it appears that the same level of accuracy is still
difficult to obtain for the RV and the MYO. It is thus important
to assess the performance of the top methods relatively to
the experts variability. Unfortunately, the actual version of the
ACDC dataset comes with one expert annotation per subject
and does not provide any inter- or intra-observer error margin.

In order to evaluate the inter- and intra-observer variabilities,
we asked the two experts O1 and O2 that jointly annotated the
ACDC ground-truths to independently relabel the images of
the 50 test subjects. O1 annotated twice the images (we call
those annotations O1a and O1b) one month apart while O2

annotated the images once. The average geometric distance
between O1a, O1b and O2 are given in the first three lines of
Table VII. As one can see, the Dice scores oscillates between
0.86 and 0.96 and the HD between 4 mm and 14.1 mm.
Without much surprise, the RV at ES is the most difficult
region to annotate, even for experimented observers. It is
also interesting to note that the Dice variations (especially for
the inter-observer) are very close to that reported in a recent
publication by Wenjia et al. [58]. As for the dH values, the
ones reported in Table VII are larger than those in Wenjia
et al.’s paper due to the fact that our implementation of dH
accounts for the 3D structures of the heart. With an inter-
slice thickness of 10 mm (in average), any slight lateral
shift between two annotations greatly increases the dH score
(please refer to the supplementary material available in the
supplementary files /multimedia tab for more details).

Below the inter- and intra-observer results given in table
VII, we provide i) the average geometrical metrics obtained
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TABLE VII
DICE AND HAUSDORFF DISTANCES FOR i) INTER- AND INTRA- OBSERVERS ii) THE AVERAGE OF EVERY SUBMITTED DEEP LEARNING (DL) METHODS

AND iii) THE WINNER OF THE SEGMENTATION CHALLENGE. RED CORRESPONDS TO RESULTS WITHIN OR ABOVE THE INTER-OBSERVER VARIATION. THE
LAST 5 LINES CORRESPOND TO METRICS COMPUTED WITHOUT THE APICAL AND THE BASAL SLICES.

Methods *

ED ES
LV RV MY O LV RV MY O

D dH D dH D dH D dH D dH D dH

val. mm val. mm val. mm val. mm val. mm val. mm

O1a vs O2 (inter-obs) 0.956 5.6 0.930 12.6 0.870 6.7 0.898 8.1 0.866 14.0 0.891 7.6
O2 vs O1b (inter-obs) 0.950 6.2 0.931 12.1 0.868 7.2 0.895 8.5 0.861 14.1 0.886 8.0
O1a vs O1b (intra-obs) 0.967 4.0 0.957 7.6 0.900 5.1 0.941 5.4 0.930 9.1 0.917 6.0
Average DL methods vs GT 0.965 7.6 0.947 13.2 0.906 10.1 0.927 9.2 0.886 15.2 0.898 10.9
Isensee et al. [44] vs GT 0.968 7.4 0.946 10.1 0.902 8.7 0.931 6.9 0.906 12.1 0.919 8.7

O1a vs O2 (inter-obs) 0.956 4.4 0.938 7.7 0.867 5.0 0.913 5.5 0.890 8.7 0.894 5.5
O2 vs O1b (inter-obs) 0.953 4.9 0.937 8.6 0.864 5.5 0.905 5.8 0.898 9.4 0.886 6.1
O1a vs O1b (intra-obs) 0.971 3.1 0.960 5.8 0.905 3.6 0.950 3.9 0.940 6.9 0.923 4.4
Average DL methods vs GT 0.972 3.7 0.951 8.1 0.896 5.2 0.929 4.2 0.899 9.9 0.915 6.1
Isensee et al. [44] vs GT 0.972 3.7 0.969 6.4 0.910 4.6 0.945 4.2 0.912 8.6 0.930 5.1

* ED: End diastole; ES: End systole; LV: Endocardial contour of the left ventricle; RV: Endocardial contour of
* the right Ventricle; Myo: Myocardium contours; D: Dice Index; dH: Hausdorff distance; GT: Ground-truth.

TABLE VIII
INTER- AND INTRA-OBSERVER VARIATION OF THE MEAN ABSOLUTE

ERROR OF THE LVEDV , RVEDV AND MYMass . BELOW, THE WINNER
OF THE CHALLENGE AND THE AVERAGE DEEP LEARNING METHODS
COMPARED WITH THE ACDC GROUND-TRUTH. RED ARE RESULT

BETWEEN THE INTER- AND INTRA-OBSERVER VARIANCE.

LVEDV RVEDV MYMass

ml. ml. g.
O1a vs O2 (inter-obs) 10.4 9.2 12.6
O2 vs O1b (inter-obs) 10.8 9.5 11.5
O1a vs O1b(intra-obs) 4.6 5.7 6.2
Average methods vs GT 7.1 10.6 10.4

Isensee et al. vs GT 5.1 7.9 7.3

by the deep learning methods involved in the challenge and
ii) the scores obtained by Isensee et al., the winner of the
segmentation challenge. Interestingly, their Dice scores are
all between the inter-observer and intra-observer scores. This
suggests that state-of-the-art deep learning techniques have
reached a plateau in the light of this metric. Although further
investigations shall be made to validate this assertion (espe-
cially for images acquired from a set of more heterogeneous
settings), the obtained results tend to show that, when properly
trained, deep learning techniques are able to improve the Dice
scores all the way to those of an expert. As for the dH scores,
methods are slightly above the inter-observer scores, but by
only 2 to 3 mm.

In table VIII, we put the inter- and intra-observer mean
absolute errors computed from the LVEDV , RVEDV and
MYMass metrics. From the given numbers, one can see that
the inter- and intra-observer scores are very close to that
reported by Wenjia et al. [58]. Moreover, the results obtained
by Isensee et al. and the average deep learning methods are
between the inter- and intra-observer scores.

2) Where do methods fail?
In the light of the results reported so far, it appears that

top deep learning segmentation methods are in the range of

Fig. 2. Average Dice index and Hausdorff distances for every method reported
in Table III broken down for every pathology.

human expects according to the Dice scores and the clinical
metrics but still 2 to 3 mm away from experts in regards
of the 3D Hausdorff distance. One may thus wonder where
do methods fail? One hypothesis can be that hearts suffering
from a pathology may be more difficult to segment. To verify
this assumption, we broke down in Fig. 2 the average Dice
and Hausdorff metrics for each pathology obtained by the
challengers on the test set (we remind that each pathological
case corresponds the same amount of patients, both for the
training and the testing phases). As one can see, there is no
pathology for which methods systematically fail. For instance,
while the HCM Dice score is somewhat low for the LV-ES
(certainly due to the difficulty to see the cardiac cavity), it is
larger than the other pathologies for MYO-ES and MYO-ED.
Also, contrary to what one might think, images from healthy
subjects (NOR) are not easier to segment than those from
pathological cases as the scores relative to this group get the
largest Hausdorff distances for the LV-ED and LV-ES.

Another hypothesis would be that 1.5T images are more
difficult to segment than 3T CMR images due to an intrinsic
lower SNR. However, after careful analysis of segmentation
results, we found no particular differences between 1.5T and
3T results, as illustrated in table IX. One reason for this could
be explained by the fact that both 1.5T and 3T images were
included in the training set thus allowing neural networks
to learn a representation specific to both magnetic fields. In
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Fig. 3. Histogram of degenerated slices ED (left), and ES (right).

TABLE IX
DICE SCORES OF THE WINNER OF THE SEGMENTATION CHALLENGE [44]

ON THE 1.5T AND 3T CMR IMAGES TAKEN FROM THE TESTSET.

ED ES

LV RV MYO LV RV MYO
1.5T 0.97 0.95 0.90 0.93 0.90 0.92
3T 0.97 0.94 0.91 0.94 0.88 0.92

order to allow visual inspection of the difference between
1.5T and 3T CMR images, we putted in the supplementary
materials (available in the supplementary files /multimedia tab)
an example of such images as well as their corresponding MRI
histograms.

Another hypothesis commonly accepted in the community
is that slices next to the valves and/or the apex of the ventricle
are more difficult to segment due to partial volume effect
with surrounding structures. To investigate this assumption,
we computed the total number of 2D segmentation results
produced by each method for which the LV, MYO or RV
had a Dice score below 0.70. The corresponding results are
summarized through the histogram in Fig. 3, where the x-
axis stands for the slice position (from the valves on the
left to the apex on the right). Please note that since the
number of slices varies from one patient to another, we stacked
the 2D segmentation result of each method and made a 3D
volume. Each volume was then resized to 10 slices with a
nearest neighborhood interpolation method. From this figure,
one can see that segmentation results obtained next to the
valves and the apex are far more error prone. In particular,
we notice almost 50% of results with very low Dice score
at the apex (often because LV/MYO/RV are very small at
that position). As for the base, we observe that methods
often struggle to differentiate between the RV, the LV, the
atria and the surrounding structures (c.f. Fig. 4). We also
put in Table VII the Dice and Hausdorff metrics computed
without the apical and basal slices. While the Dice scores are
almost identical with and without the end slices, the Hausdorff
distance decreases significantly, sometimes by a factor of two
for the learning methods. Interestingly, the learning methods
fall within the inter- and intra-observer variabilities (apart
for Hausdorff metric for the RV at ES) which shows that
segmenting apical and basal slices is far more difficult, even
for experts.

Finally, it is worth pointing that the use of a larger database
than the one involved in this project might help in resolving
the listed remaining issues. For instance, the UK Biobank
[19] may be a serious candidate for this purpose. We thus
see the UK Biobank and our database as complementary with

Fig. 4. Typical degenerated result at the base of the heart. [Left] input image;
[Middle] ground truth; [Right] prediction.

the strong potential to offer materials for upcoming research
studies.

3) For the need of a new metric
Results reported so far suggest that top deep learning meth-

ods are very close to the inter-observer variability. However,
the visual inspection of their segmentation results reveal that
unlike experts, deep learning methods sometimes generate
anatomically impossible results as shown in Fig. 4. Interest-
ingly, the metrics used to gauge performances seem resilient
to such abnormalities. In order to measure the number of
anatomically impossible results, one of our expert visually
screened the test results by Isensee et al. [44]. This revealed
that results for 41 patients out of 50 had at least one slice
with an anatomically impossible segmentation such as the RV
disconnected from the MYO or the LV cavity in contact with
the background (several detailed examples are given in the
supplementary materials available in the supplementary files
/multimedia tab). Those 41 patients had problematic results for
1.6 slices on average, most of them located next to the valves
or the apex. This clearly underlines the fact that clinical and
geometrical metrics used to assess results have important limits
and that methods within the inter-observer variability may
still be error-prone. This suggests the need for new evaluation
metrics before one may claim that methods have reached the
accuracy of an expert.

VI. CLINICAL IMPLICATIONS

Results presented thus far suggest that we are at the eve
of cracking the nut of fully automatic CMRI analysis. This
would allow to reduce the time spent on analyzing raw data
so conclusions of the examination could be provided to the
patient before leaving the radiology department. In todays
clinical practices, the latest systems provide pre-filled radio-
logic reports with an integrated automatic speech recognition
technology so doctors can dictate the various physiological and
technical parameters. An automatic CMRI analysis software
could thus easily be integrated within this framework. That
being said, further investigations are still required before such
software gets approved by accreditation agencies (CE mark,
FDA, ISO, etc.) and get integrated in MRI consoles. Also,
although classification software get near-perfect results, the
use of a ”diagnostic black box” could not be integrated as-is
in a clinical practice. Along with the pathology prediction, a
medical report must always contain the physiological reasons
for which the patient was diagnosed in a certain way. This
calls for cardiac parameters such as EF, volumes, and mass
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estimated by a segmentation method which, in the context of
deep learning approaches, may sometimes fail at the apex and
the base and even produce anatomically impossible results.
One shall also perform further analysis on images acquired
by a wider variety of MRI scanners with different acquisition
protocols to better assess the true generalization accuracy of
machine learning algorithms.

Further research is also required on patient data suffering
from other pathologies. Although we believe that some other
pathologies such as inflammatory cardiomyopathy could be
successfully diagnosed with the proposed machine learning
methods, other (yet more complex) diseases such as congenital
heart diseases or heart defect, would need dedicated studies.

VII. CONCLUSIONS

ECG-gated sequences such as Cine-MRI allow for accurate
analysis of left and right ventricular functions. The delin-
eation of ventricular endocardium and epicardium allows the
calculation of different parameters, such as LVEF , RVEF ,
myocardial mass, myocardial thickness, tele-systolic and tele-
diastolic ventricular volumes. These measurements are an
integral part of the exam interpretation by the radiologist and
are necessary for the diagnosis of many cardiomyopathies.
In this paper, we have shown that state-of-the-art machine
learning methods can successfully classify patient data and get
highly accurate segmentation results. Results also reveal that
the best convolutional neural networks get accurate correlation
scores on clinical metrics and low bias and standard deviation
on the LVEDV and LVEF , two of the most commonly-used
physiological measures. However, methods are still failing
at the base and the apex, especially when considering the
Hausdorff distance.
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