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1. Introduction

Flux compactifications have attracted considerable attention recently. They are of interest

from the point of view of string cosmology, phenomenology, and the general study of string

theory vacua with N ≤ 1 supersymmetry.

Much more needs to be done to understand these compactifications better. In particu-

lar it should be possible to understand the full superpotential, including non-perturbative

corrections, for these compactifications in greater depth. The superpotential has already

proved amazingly useful in the study of supersymmetric string theories and field theories.

And we can hope that its study for flux compactifications will prove similarly rewarding.
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An immediate motivation for our work is to understand KKLT [1] type compactifi-

cations better. These compactifications were first formulated in the context of IIB string

theory of Calabi-Yau orientifolds or related F-theory compactifications. Here the non-

perturbative corrections to the superpotential play a vital role in stabilising the Kahler

moduli [2].

The study of non-perturbative corrections to the superpotential -in the closely related

context of M-theory on a Calabi Yau fourfold - was pioneered by Witten [3]. He showed that

non-perturbative corrections due to euclidean 5-branes wrapping divisors in the four-fold

could arise if the divisor satisfied a particular topological criterion, namely its arithmetic

genus was unity. In Witten’s analysis it was assumed that a particular U(1) symmetry,

which is a subgroup of the structure group of the normal bundle to the divisor, was un-

broken. The arithmetic genus is an index which counts the number of zero modes after

grading by this symmetry. More recently, in [4], a class of non-perturbative corrections

were studied in a IIB compactification on K3 × T 2/Z2, This is related to M theory on

K3 × K3. Evidence was found that in the presence of flux the U(1) symmetry mentioned

above is broken. And it was argued that as a result non-perturbative corrections could

arise even in situations where the arithmetic genus in not unity.

In this paper we consider a euclidean D3 brane wrapping a 4-cycle in a non-trivial

background including flux. Using the method of gauge completion we calculate all the

terms in the action of the D3 brane which are bilinear in fermions. These terms explicitly

show that the U(1) symmetry of rotations normal to the 4-cycle is indeed broken in the

presence of flux. As a result the zero mode counting will be altered in general and modes

with the same U(1) charge can pair up and get heavy. In a particular example of IIB on

an T 6/Z2 orientifold we examine the resulting fermion zero modes. A non-perturbative

correction to the superpotential requires two zero modes. Ignoring flux, there are sixteen

zero modes. Including flux, we find for a large class of divisors that twelve of the sixteen

zero modes are lifted. Although this still leaves four zero modes, which is too many for a

correction to be possible, the example illustrates the “efficacy” of flux in lifting zero-modes.

This paper is only a first step towards a more complete understanding. One would like

to use the results obtained here to understand the number of zero modes which arise more

generally. And when the zero mode counting allows for a correction to the superpotential,

calculate these corrections. These are interesting questions which we leave for the future.

We should also comment on some of the other relevant literature here. We use the

method of gauge completion to determine the world volume theory for the D3 branes.

This method is clearly discussed in the paper by [5, 6]. Our analysis very closely parallels

the work by Grana [7]. The only difference is that we are interested in the more general

situation where the D3 brane is not necessarily transverse to the compactified directions.

Our results are in agreement after T-duality with those obtained for the D0 brane by [8].

This is a useful check on our work. The fermion bilinear terms for a Dp brane in a general

background have in fact been obtained earlier in the significant papers by Marolf, Martucci

and Silva, [10, 11]. Our results can be obtained as a gauge fixed version of their’s for the

D3-brane case and agree. This constitues an important check on our results and methods.

Finally, while we were working on this project, the paper by Kallosh and Sorokin [9]
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appeared which determined the fermion bilinear terms for an M 5-brane. Using duality

this can be related to the action we calculate here. After identifying the relevant gauge

conditions etc we have found substantial agreement.1

This paper is planned as follows. The method of gauge completion, which we use to

deduce the fermion bilinear terms, is first briefly explained in section 2. Following that

we illustrate its use for some examples and then present the main results determining the

superfields in IIB theory in terms of the component supergravity fields upto the required

order. In section 3 we discuss the resulting D3 brane action. Our results are checked against

those for a D0 brane using T-duality in section 4, we also comment on the agreement with

other resulsts in the literature. In section 5 we discuss an example of a compactification on

a T 6/Z2 orientifold and calculate the resulting zero modes for a class of divisors. Last, but

not least, are the six appendices which contain some of the important detailed calculations

of the paper.

2. Gauge completion

The approach we will follow for constructing the world volume action of the D3 brane

is straightforward. Given a IIB background in superspace the D3-brane action can be

constructed by appropriately pulling back the background fields on to the brane world

volume, as is explained in [12 – 16]. This action has the required supersymmetry and is

also κ symmetric, for on-shell backgrounds. We are interested here in the D3-brane action

in terms of the standard component fields of IIB supergravity. So we will first express the

superfields of IIB theory in terms of the component supergravity fields by a process called

“gauge completion”. Once this is done we use the construction mentioned above in terms

of the superfields to obtain the required action.

The method of gauge completion is discussed in [5]. It was applied to the superme-

mbrane in [6]. Our work will closely parallel the paper of Grana who used an identical

strategy. The only difference is that [7] was interested in the case where the D3 brane

is transverse to the compactified directions. We will be interested in obtaining the more

general answer. Our primary interest is in applying these results to the case of a euclidean

D3 brane which wraps a four cycle in the internal directions. In this section and the next

two, where we construct the world volume action and compare our results with those ob-

tained in the D0 brane case respectively, we will work in Minkowski space. The required

transformations to go to euclidean space will be discussed in section 5 before we apply our

results in an explicit example.

The idea behind gauge completion is to expand the superfields in terms of the fermionic

coordinates, θ, and express each term in the expansion in terms of the component fields

of supergravity. By the component fields here we mean the fields which appear in the

usual discussion of IIB supergravity, for example, section 13, [17] and, [18]. For an on-shell

background these satisfy the equations of motion of the IIB theory. To lowest order in the

θ expansion of the superfields the component supergravity fields which appear are known.

1We thank R. Kallosh and D. Sorokin for discussions in this regard.
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To go to higher orders one follows an iterative procedure. The idea is that superfields must

transform as appropriate tensors under general bosonic and fermionic coordinate transfor-

mations in superspace. In particular this included supersymmetry transformations which

are translations in the fermionic coordinates. Since the supersymmetry transformations

for the component supergravity fields are known this allows us to express the higher order

terms in the θ expansion in terms of the lower order ones. Obtaining an answer to all

orders for a general background in this way is computationally quite non-trivial. Luckily,

since we are only interested in terms which are bilinear in the fermions here, it will suffice

to carry out this expansion upto second order in θ at most.

In this section we will first illustrate this procedure for the dilaton superfield, φ̂ and

the NS-NS two-form superfield, B̂MN and then present the results for the other super-

fields towards the end. The calculations are somewhat cumbersome and several details are

presented in the appendix.

Let us begin by explaining our notation. We denote superspace coordinates by ZM =

(xm, θµ), which stand for the bosonic and fermionic components respectively. The in-

dices {M,N, . . .} = {m,n, . . . , µ, ν, . . .} denote curved (super) coordinates where (m,n)

denote Bosonic indices and (µ, ν) fermionic indices. Tangent space indices are given by

{A,B, . . .} = {a, b, . . . , α, β, . . .}, with (a, b) denoting bosonic and (α, β) fermionic indices.

We will use real 16 component Majorana-Weyl spinors, our conventions for the Gamma

matrices are summarised in appendix A. The spinor indices α, β should be viewed as com-

posite indices standing for the tensor product of a Majorana-Weyl index and an additional

SO(2) index.

Our notation for the superfields is as follows. A generic superfield is represented

by F̂MN ··· (with a ‘ ˆ ’ over the field). The dilaton superfield, whose lowest compo-

nent is the dilaton, φ, is denoted by φ̂, the vierbein superfield by êA
M and similarly for

B̂MN , Ĉ, ĈMN , ĈMNPQ which denote the superfields containing the NS-NS two form, and

the RR zero, two and four forms respectively.

Our conventions in superspace are the same as those in [19]. Derivatives with re-

spect to θ are left derivative. Superspace differentials satisfy the property that dZ M ∧
dZN = (−1)(1+MN)dZN ∧ dZM , where MN = +1 when both M,N are fermionic, and

zero otherwise. A differential two-form for example is given in terms of components by

B̂ = dZNdZM B̂MN , and so on.

Under a superspace diffeomorphism ZM → ZM + ΣM (Z), the dilaton superfield φ̂ is a

scalar and transforms as

δφ̂ = ΣM∂M φ̂ . (2.1)

The fields êA
M and B̂MN transform as a vector and a two-index tensor respectively,

δêA
M = ΣP ∂P êA

M + ∂MΣP êA
P

δB̂MN = ΣP ∂P B̂MN +
(

∂MΣP B̂PN − (−1)MN∂NΣP B̂PM

)

, (2.2)

and similarly for the RR superfields Ĉ, ĈMN , ĈMNPQ. We denote the action of a (super)

local Lorentz transformation on the vierbein as,

δêA
M = ΛA

B êB
M . (2.3)
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There are additional gauge symmetries under which the the NS-NS two- form and the

RR fields transform, these are superspace generalisations of the familiar gauge symmetries

that act on the component supergravity fields. For example there is a gauge symmetry

under which the B̂MN transforms as,

δB̂MN = ∂MΣ
(b)
N − (−1)MN∂NΣ

(b)
M , (2.4)

while the other fields are invariant. Similarly, there are gauge symmetries under which ĈMN

and ĈMNPQ transform with gauge transformation parameters Σ
(c)
M and Σ

(c)
MNP respectively.

To zeroth order in θ we have the following identification of the superfields in terms of

the component fields.

φ̂ = φ

Ĉ = C

êa
m = ea

m

êα
m = ψm

α

êα
µ = δµ

α

B̂mn = Bmn

Ĉmn = Cmn

Ĉmnpq = Cmnpq , (2.5)

and all other fields are zero.

2.1 The dilaton superfield to O(θ2)

We are now ready to illustrate how the procedure of gauge completion works. We will first

examine the dilaton superfield φ̂. Consider a super-diffeomorphism which to lowest order

in θ has components,

Σm = 0 , Σα = ǫα . (2.6)

From eq. (2.1) we see that, to O(θ0), φ̂ transforms under this super-diffeomorphism as

δφ̂ = ǫα∂αφ̂ . (2.7)

Now since the lowest component of φ̂ is the dilaton, φ, we also know from the supersym-

metry transformations of IIB supergravity fields (appendix A.1) that to this order,

δφ̂ = δφ = ǭλ . (2.8)

Equating these two expressions tells us that to O(θ1), φ̂ is given by

φ̂ = φ + θ̄λ . (2.9)

The components of super diffeomorphism we started with, eq. (2.6), are corrected at

O(θ1). We need to calculate these corrections as the first step in obtaining the O(θ2) terms

in φ̂. This can be done by relating the commutator of two supersymmetry transformations

to translations.

– 5 –
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Given two supersymmetry transformations with parameters ǫ1, ǫ2 it is straightforward

to see that the dilaton transforms under their commutator by a translation,

(δ1δ2 − δ2δ1)φ = ξm∂mφ , (2.10)

where the translation parameter ξm is given by

ξm = ǭ2Γ
mǫ1 . (2.11)

On the other hand, from eq. (2.1) we see that the dilaton superfield under the commutator

must transform as,

(δ1δ2 − δ2δ1)φ̂ = ΣP
2 ∂P ΣM

1 ∂M φ̂ − ΣP
1 ∂P ΣM

2 ∂M φ̂ . (2.12)

Requiring eq. (2.12) to agree with eq. (2.11) upto O(θ0) allows us to obtain the O(θ1)

corrections to the super diffeomorphism, eq. (2.6).

We are interested in this paper in backgrounds where only bosonic supergravity fields

acquire expectation values and not the fermionic fields ψµ and λ. With this in mind, from

now on we will set terms depending on fermionic background fields to zero in the appropri-

ate equations. To O(θ1) one then finds that the components of the superdiffeomorphism

are given by

Σm =
1

2
θ̄Γmǫ , Σα = ǫα . (2.13)

Actually, the general solution for ΣM involves certain undetermined θ independent tensors.

However, as explained elaborately in [6], by a redefinition of the superspace coordinates we

can set them to zero resulting in eq. (2.13).

The O(θ2) terms in the dilaton superfield, φ̂ can now be obtained by matching eq. (2.1)

with

δφ̂ = δφ + θ̄δλ . (2.14)

Using the expression for δλ as given in the appendix A.1, we find

φ̂ = φ + θ̄λ − 1

48
θ̄Γmnpσ3θHmnp −

1

4
eφθ̄Γm(iσ2)θFm − 1

48
eφθ̄Γmnpσ1θFmnp . (2.15)

2.2 B̂MN to O(θ2)

We now turn to the NS-NS two-form superfield B̂MN . The only new twist here is that

we will need to include a suitable gauge transformation, eq. (2.4), with the coordinate

transformation, eq. (2.13), to determine the θ expansion in this case.

To understand this let us first calculate the commutator of two supersymmetry trans-

formations, with parameters, ǫ1, ǫ2 on the component supergravity field Bmn. Using the

susy transformation rules given in the appendix A.1,

δ1δ2Bmn = ǭ2σ
3 (Γmδ1ψn − Γnδ1ψm) , (2.16)

– 6 –
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we find that

(δ1δ2 − δ2δ1)Bmn = −
(

∂m(ǭ2σ
3Γnǫ1) − ∂n(ǭ2σ

3Γmǫ1)
)

+ ǭ2Γ
pǫ1Hmnp

= ξp∂pBmn + ∂mξpBpn − ∂nξpBpm + ∂mξ12(b)
n − ∂nξ12(b)

m . (2.17)

The second line on the r.h.s. is the transformation of Bmn under a combined translation

by ξm and a gauge transformation with parameter ξ
12(b)
n . One finds that this equation can

be met if ξn is given by eq. (2.11), and the gauge transformation parameter is,

ξ12(b)
m = ξnBmn − ǭ2σ

3Γmǫ1 . (2.18)

In terms of superfields this tells us that the super-diffeomorphism, eq. (2.13), should be

accompanied by a gauge transformation. We denote the gauge transformation parameter

in superspace by Σ(b) below. The combined transformation can then be written as,

δB̂MN = ΣP ∂P B̂MN+∂MΣP BPN−(−1)MN∂NΣP BPM+∂MΣ
(b)
N −(−1)MN∂NΣ

(b)
M . (2.19)

The commutator of two transformations in superspace can now be calculated. We get

that

(δ1δ2 − δ2δ1)B̂MN = ∂MΣ
12(b)
N − (−1)MN∂NΣ

12(b)
M + · · · . (2.20)

The ellipses on the rhs denote extra terms which arise due to a coordinate transformation

with parameters, eq. (2.13). Σ12(b) above denotes a gauge transformation, it’s components

turn out to be,

Σ
12(b)
M =

(

ΣP
2 ∂P Σ

1(b)
M + ∂MΣP

2 Σ
1(b)
P

)

− (1 ↔ 2) . (2.21)

To leading order in θ, Bmµ and Bµν both vanish and the only non-zero component of

B̂MN is Bmn. Comparing eq. (2.21) and eq. (2.18) and using eq. (2.13) for the components

of ΣP we then find that upto O(θ),

Σ(b)
m =

1

2
θ̄

(

ΓnBmn − σ3Γm

)

ǫ . (2.22)

And Σ
(b)
µ = 0.

We are now ready to evaluate B̂MN to higher orders in θ. From the susy transformation,

appendix A.1, for the supergravity field Bmn it follows that upto O(θ1)

B̂mn = Bmn + θ̄σ3Γmψn − θ̄σ3Γnψm . (2.23)

To evaluate B̂mµ, note that

δB̂mµ = ǫα∂αB̂mµ +
1

2

(

ǭσ3Γm

)

µ
(2.24)

Since Bmµ vanishes at zeroth order in θ, the above variation should be zero, which gives

B̂mµ = −1

2

(

θ̄σ3Γm

)

µ
. (2.25)

Similarly one can show that B̂µν must vanish upto O(θ1).

– 7 –
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To find the second order results for B̂mn, we consider the variation of B̂mn, eq. (2.19),

upto to first order in θ. Using the results for the superdiffeomorphism, eq. (2.13), and

gauge transformation, eq. (2.22), this is given by

δB̂mn = ǫα∂αB̂mn +
1

2
θ̄ΓpǫHmnp + θ̄σ3 (Γm∂nǫ − Γn∂mǫ) − 1

2
θ̄σ3Γaǫ (∂men

a − ∂nem
a) .

(2.26)

On the other hand this has to be equated with the variation of eq. (2.23) leading to

δB̂mn = δBmn + θ̄σ3 (Γmδψn − Γnδψm)

= ǭσ3 (Γmψn − Γnψm) + θ̄σ3 (Γm∂nǫ − Γn∂mǫ) − 1

2
θ̄σ3Γaǫ (∂men

a − ∂nem
a) +

+
1

4
θ̄σ3

(

ωm
abΓnab − ωn

abΓmab

)

ǫ − 1

4
eφθ̄σ1ΓmnpǫF

p +
1

2
θ̄ΓpǫHmnp−

−1

8
θ̄ (Γm

pqHnpq − Γm
pqHmpq) ǫ − 1

24
eφθ̄(iσ2)

(

Γmn
pqrF ′

pqr + 6ΓpF ′
mnp

)

ǫ−

− 1

8 · 5!e
φθ̄σ1

(

Γmn
pqrstF ′

pqrst + 20ΓpqrF ′
mnpqr

)

ǫ , (2.27)

where on the rhs we have used the susy transformations for Bmn and the gravitino from

appendix A.1. Eq. (2.26), (2.27) finally give us the expansion to second order in θ,

B̂mn = Bmn + θ̄σ3 (Γmψn − Γnψm) +
1

8
θ̄σ3

(

ωm
abΓnab − ωn

abΓmab

)

θ −

− 1

16
θ̄ (Γm

pqHnpq − Γm
pqHmpq) θ−

−1

8
eφθ̄σ1ΓmnpθF p − 1

48
eφθ̄(iσ2)

(

Γmn
pqrF ′

pqr + 6ΓpF ′
mnp

)

θ−

− 1

16 · 5!e
φθ̄σ1

(

Γmn
pqrstF ′

pqrst + 20ΓpqrF ′
mnpqr

)

θ . (2.28)

As was mentioned in the discussion of the previous subsection we are interested in

backgrounds for which the fermions ψm and λ are zero. Also, when we construct the world

volume action it will be convenient to work in static gauge and fix the κ-symmetry by

choosing the space time spinors θ1, θ2 to be

θ1 = Θ , θ2 = 0 . (2.29)

With this choice the expression for B̂mn becomes

B̂mn = Bmn +
1

8
Θ̄

(

ωm
abΓnab − ωn

abΓmab

)

Θ − 1

16
Θ̄ (Γm

pqHnpq − Γm
pqHmpq)Θ . (2.30)

It will be enough for our purposes of determining the fermion bilinear terms below to

determine the other components Bmµ, Bµν , to O(θ1) which was already done above.

2.3 Final results

One can follow through similar steps to obtain the expansions for other superfield. We

have summarised the results below, detail calculations are performed in the appendix.
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As was mentioned above, we have set the fermionic backgrounds to zero. Also we work

with the choice of spinors in eq. (2.29). The components of the superfields to required

order in the θ expansion are then given by:

φ̂ = φ − 1

48
Θ̄ΓmnpΘHmnp

Ĉ = C − 1

48
Θ̄ΓmnpΘF ′

mnp

êa
µ = −1

2

(

θ̄Γa
)

µ

êa
m = em

a − 1

8
ωm

cdΘ̄Γa
cdΘ − 1

16
HmpqΘ̄ΓapqΘ

B̂mµ = −1

2

(

θ̄σ3Γm

)

µ

B̂mn = Bmn − 1

8
Θ̄

(

Γm
abωnab − Γn

abωmab

)

Θ − 1

16
Θ̄ (Γm

pqHnpq − Γn
pqHmpq) Θ

Ĉmµ =
1

2
e−φ

(

θ̄σ1Γm

)

µ
− 1

2
C

(

θ̄σ3Γm

)

µ

Ĉmn = Cmn − 1

8
CΘ̄

(

Γm
abωnab − Γn

abωmab

)

Θ +
1

8
Θ̄ΓmnpΘF p−

− 1

16
CΘ̄ (Γm

pqHnpq − Γn
pqHmpq)Θ − 1

16
Θ̄

(

Γm
pqF ′

npq − Γn
pqF ′

mpq

)

Θ−

− 1

16 · 5! Θ̄
(

Γmn
pqrstF ′

pqrst + 20ΓpqrF ′
mnpqr

)

Θ

Ĉµmnp = −1

2
e−φ

(

θ̄(iσ2)Γmnp

)

µ
+

3

2

(

θ̄σ3C[mnΓp]

)

µ

Ĉmnpq = Cmnpq −
3

2
Θ̄C[mnΓp

abωq]abΘ − 3

4
Θ̄C[mnΓp

stHq]stΘ +

+Θ̄

(

1

48
Γmnpq

stuF ′
stu +

1

2
Γ[mnpFq] +

3

4
Γ[mn

sF ′
pq]s −

− 1

96
Γ[mnp

stuvF ′
q]stuv −

1

8
Γ[m

stF ′
npq]st

)

Θ . (2.31)

Here, H3 = dB. And F ′
mnp, F ′

mnpqrs, refer to the components of the three form, dC2−C0H3,

and the five form, dC4 −C2 ∧H3, respectively. Eq. (2.31) is one of the main results of our

paper.

3. World volume action

3.1 The action

The action for the D3 brane is given by [12 – 16]

S = −µ3

∫

d4ζe−φ̂

√

−det
(

ĝ̃
ĩj

+ Fĩj̃ − B̂
ĩ̃j

)

+ µ3

∫

eF−B̂ ∧ Ĉ . (3.1)

It is obtained by pulling back the superfields from spacetime to the D3 brane world volume.

For on-shell background fields the action is κ-symmetric. In eq. (3.1) ζ ĩ, ĩ = 0, . . . 3 are the

world volume coordinate. We also denote Ĉ = ⊕nĈn.

It will be useful in the discussion below to distinguish between the pullback of the

superfield and pullback of the component bosonic supergravity fields. The pullback of a
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superfield is by definition obtained by pulling back the superspace tensor onto the world-

volume. For example, the pullback of B̂MN is,

B̂
ĩ̃j

= ∂ĩZ
M∂j̃Z

N B̂MN , (3.2)

where ZM = (xm, θµ) are the spacetime superspace coordinates. This is what appears in

eq. (3.1). In contrast we define the pullback of the component supergravity field from the

ordinary (Bosonic) target space to the worldvolume. So,

Bĩj̃ = ∂ĩx
m∂j̃x

nBmn . (3.3)

To distinguish between the two we will use boldface indices in the case of the superfield,

as in eq. (3.1), (3.2) above.

It will also be useful to distinguish between the lowest order term and the higher

order contributions in the θ expansion for any superfield. the latter will be denoted by an

additional prime. For example, we can write for the dilaton superfield,

φ̂ = φ + φ′ (3.4)

where from eq. (2.31), φ′ = − 1
48Θ̄ΓmnpΘHmnp .

Using the expressions for the super vierbeins from eq. (2.31), it then follows that the

metric ĝ̃
ĩj

= êa
ĩ
êb
j̃
ηab to second order in Θ is,

ĝ̃
ĩj

= gĩj̃ +
(

∂ĩx
m∂j̃x

n + ∂j̃x
m∂ĩx

n
)

eb
ne′

a
mηab +

1

2
Θ̄Γa

(

DĩΘ∂j̃x
m + Dj̃Θ∂ĩx

m
)

eb
mηab .

(3.5)

A similar straightforward analysis shows that the pull back of the NS and RR superfields

become

B̂
ĩ̃j

= Bĩj̃ + ∂ĩx
m∂j̃x

nB′
mn +

1

2

(

Θ̄ΓĩDj̃Θ − Θ̄Γj̃DĩΘ
)

Ĉ
ĩ̃j

= Cĩj̃ + ∂ĩx
m∂j̃x

nC ′
mn +

1

2
C

(

Θ̄Γĩ∂j̃Θ − Θ̄Γj̃∂ĩΘ
)

Ĉ
ĩ̃jk̃̃l

= C
ĩj̃k̃l̃

+ ∂ĩx
m∂j̃x

n∂
k̃
xp∂

l̃
xqC ′

mnpq + 4!∂[̃iΘ
µ∂j̃x

n∂
k̃
xp∂

l̃]x
qĈµnpq . (3.6)

Using these expressions we can compute the world volume action. The DBI action

becomes

SDBI = −µ3

∫

d4ζe−φ
√

detg

{(

1 +
1

4
(F−B)2

)(

1 +
1

48
Θ̄ΓmnpΘHmnp

)

+ (3.7)

+
1

2

(

δ̃i
k̃ + (F−B)̃i

k̃

)(

Θ̄Γ
k̃
DĩΘ − 1

8
Θ̄Γ

k̃pq
ΘH ĩpq

)

+ · · ·
}

.

Here we have followed a slightly condensed notation. In our notation above, ĩ, j̃, k̃ denote

world volume indices, whereas m,n, p denote spacetime (bosonic) indices. Now, Γ k̃ ≡
Γm∂

k̃
xm, ∂ ĩΘ ≡ gĩj̃∂j̃Θ, etc. The ellipses on the right hand side above indicate additional

terms that can be obtained by expanding the square root in eq. (3.1) to higher order.

In addition of course extra terms would arise if we carried out the θ expansion of the

superfields to higher order as well.
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Similarly the Wess-Zumino action is

SWZ = µ3

∫

e(F−B) ∧C − 1

96
µ3

∫

(F − B) ∧ (F − B)Θ̄ΓmnpΘF ′
mnp +

+
1

32
µ3

∫

d4ζ
√

detgǫĩj̃k̃l̃(F − B)̃ij̃ ×

×Θ̄

{

Γ
k̃l̃p

F p − Γ
k̃
pqF ′

l̃pq
− 1

2 · 5!

(

Γ
k̃l̃

pqrstF ′
pqrst + 20ΓpqrF ′

k̃l̃pqr

)

}

Θ +

+
1

16
µ3

∫

d4ζ
√

detgǫĩj̃k̃l̃

(

1

72
Θ̄Γ

ĩj̃k̃l̃
pqrΘF ′

pqr +
1

3
Θ̄Γ

ĩj̃k̃
ΘF

l̃
+

+
1

2
Θ̄Γĩj̃

pΘF ′
k̃l̃p

− 1

3!
Θ̄Γĩ

pqΘF ′
j̃k̃l̃pq

)

. (3.8)

Equations, (3.7) and (3.8), are important for the the following discussion. We will see in the

next section that the action above agrees with other established results in the literature.

3.2 Some comments

Two comments are now in order.

One of the main motivations for this project is to understanding non-perturbative

corrections to the superpotential which can arise in flux compactifications. In this context

we are interested in IIB string theory compactified down to R3,1 (actually for the non-

perturbative corrections we are interested in the euclidean situation R4 as discussed in the

next section). One class of non-perturbative effects, which is our main focus here, arise due

to to euclidean D3 branes that wrap a holomorphic 4-cycle, i.e. a divisor, in the internal

6-dimensional space.

Under a duality map to M-theory this lifts to a euclidean 5-brane instanton wrapping a

divisor of the Calabi-Yau four-fold. The resulting superpotential was discussed in the semi-

nal paper of Witten [3]. An U(1) symmetry played an important role in this analysis. This

symmetry is a subgroup of the structure group of the normal bundle and corresponds to ro-

tations in the plane of the two compact directions orthogonal to the divisor. An index was

formulated by counting the fermionic zero modes after grading them by their charge under

this symmetry. This index turned out to be proportional to the arithmetic genus of the

divisor and it was argued that a correction could only arise if the arithmetic genus was unity.

In the IIB description we are using here the U(1) the divisor is 2 complex dimensional

and the compactified space is 6-dimensional. This means, roughly speaking, that two

compact directions are normal to the divisor and the U(1) symmetry is rotations in the

plane formed by these two directions. We will now see that the presence of three-form flux

can lead to this U(1) symmetry being broken in the D3-brane world volume theory. As

a result, zero modes with the same U(1) charge can pair up and get heavy. In this way,

a correction to the superpotential can arise even though the index condition mentioned

above is not met.

The essential point is simply that if the three form flux has two legs along the 4-cycle

and one perpendicular to it then it will break the U(1) symmetry mentioned above. Since

the fluxes enter in various bilinear fermion couplings in eqs. (3.7) and (3.8), the mass terms
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for the fermions will in general violate this symmetry. To illustrate this concretely let us

consider the situation where F −B in the world-volume theory vanishes. Then the fermion

three-form flux dependent mass terms for a D3 brane wrapping a 4-cycle take the form,

Smass = −µ3

∫

d4ξ
√

detgΘ̄

{

e−φ 1

48
ΓmnpHmnp −

1

16
e−φΓĩpqH

ĩpq − 1

32
ǫĩj̃k̃l̃Γp

ĩj̃
F ′

k̃l̃p

}

Θ

(3.9)

(we have used the fact that the flux preserves Poincare invariance in R3,1 to set some

terms to zero). We remind the reader that in our notation, indices, ĩ, j̃, k̃, l̃ are along the

worldvolume, and m,n, p take 0, . . . , 9 values in spacetime. Now, in general, it is easy to

see that if H,F ′ have two legs along the brane and one along the normal then each of the

terms appearing above breaks the U(1) symmetry. Also, the sum of these terms does not

vanish for on-shell backgrounds, even those which meet the conditions of supersymmetry.

Thus, as was mentioned above the mass terms will in general break the U(1) symmetry

allowing in particular two fermions with same sign charges to pair up and get heavy.

Second, let us now consider the special case of a D3-brane which is along R3,1 and

transverse to the internal directions. We also take the background fields to preserve the

Poincare symmetry of R3,1. In addition, we take the space time metric to be of the form

g10 = e2A(ym)η4 ⊗ gtr
6 . The DBI term is then given by,

SDBI = −µ3

∫

d4ζe−φ
√

detg

{

(

1 +
1

4
(F − B)2

)(

1 +
1

48
Θ̄ΓmnpΘHmnp

)

+

+
1

2

(

δ̃i
k̃ + (F − B)̃i

k̃
)

Θ̄Γ
k̃
∂ ĩΘ + · · ·

}

. (3.10)

The spin connection dependent term vanishes in the above equation for the a general

warped metric. The Wess-Zumino term is given by

SWZ = µ3

∫

C4 −
1

96
µ3

∫

(F − B) ∧ (F − B)Θ̄ΓmnpΘF ′
mnp +

+
1

32
µ3

∫

d4ζ
√

detgǫĩj̃k̃l̃(F − B)̃ij̃ ×

×Θ̄

{

Γ
k̃l̃p

F p − 1

2 · 5!
(

Γ
k̃l̃

pqrstF ′
pqrst + 20ΓpqrF ′

klpqr

)

}

Θ +

+
1

48 · 4!µ3

∫

d4ζ
√

detgǫĩj̃k̃l̃Θ̄Γĩj̃k̃l̃
pqrΘF ′

pqr . (3.11)

The full action is the sum of these two terms. This result is of interest from the point of

view of calculating the soft terms that can arise after turning on fluxes [20 – 27]. It agrees

(upto some minor discrepancy in the numerical factors) with ref. [7].

Ignoring terms dependent on (F − B), the O(Θ2) part of the action becomes

S(Θ2) =
µ3

48

∫

d4ζe−φ
√

detgΘ̄ΓmnpΘRe(∗G − iG)mnp , (3.12)

where G ≡ F ′ − ie−φH. We see that for imaginary self dual flux, the above term vanishes.

This is to be expected from the analysis of [28].
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4. T-duality and comparison with other results

As a simple check of our results, we can take the type-IIA action for D0 brane and perform

three T-dualities to obtain the action for D3 brane. The D0 brane action to order Θ2, in

the Einstein frame, is given by [8]

S = −µ0

∫

dτe−
3
4
φ

(

1 − 3

4
Φ|Θ2 + · · ·

)

√

− (gmn + 2emaEa
n|Θ2 + · · ·) ẋmẋn+

+µ0

∫

dτ (Cm + Bm|Θ2 + · · ·) ẋm (4.1)

where the dots indicate terms of higher order in Θ. The order Θ2 part of the IIA superfields

are given by

Φ|Θ2 =
i

48
e−

1
2
φΘ̄ΓmnpΘGmnp

Bm|Θ2 = − i

16
Θ̄γm

npΘFnp −
i

48
e−

1
2
φΘ̄γnpqF ′

mnpq (4.2)

Ea
m|Θ2 =

i

8
Θ̄γabcΘωmbc +

i

64
e−

1
2
φ

(

Θ̄γm
npΘHr

np + 3Θ̄γanpΘHmnp −
1

3
ea
mΘ̄γnpqΘHnpq

)

.

Using the above formulae, we write the action in terms component fields. Also, before

performing T-duality, we make the following field redefinitions [7] to change the action in

to sting frame.

gmn(E) = e−
1
2
φgmn(S) , Γm

(E) = e
1
4
φΓm

(S) , Θ(E) = e−
1
8
φΘ(S) . (4.3)

With this, the DBI action becomes

SDBI = −µ0

∫

dτe−φ√−g00

(

1 +
i

8
Θ̄

{

γ0abω0ab +
1

2
γ0npH0np −

1

6
γmnpHmnp

}

Θ + · · ·
)

(4.4)

and the Wess-Zumino part

SWZ = µ0

∫

dτ

{

C0 −
i

16

(

Θ̄γ0
mnΘFmn +

1

3
Θ̄γmnpΘF ′

0mnp

)

+ · · ·
}

. (4.5)

Now we perform three T-dualities along {x, y, z}. Let us denote these directions by

ḿ, ń, . . . and the remaining directions by p̌, q̌, . . .. For simplicity, we consider the following

special case. We assume gḿp̌ = Bńq̌ = Bńḿ = 0 and we take the metric along the directions

x, y, z to be diagonal. Also we set the spin connection to zero. Using the T-duality rules

as given in the appendix A.5, it is then straightforward to see that the quadratic part of

the action (4.4) is identical to our result

SDBI(Θ
2) = −µ3

∫

d4ζe−φ
√

det g

(

1

48
Θ̄ΓmnpΘHmnp −

1

16
Θ̄ΓĩpqΘH ĩpq

)

. (4.6)
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We can now turn to the quadratic part of the Wess-Zumino action. After performing the

duality, we find

− i

16

(

Θ̄γ0
mnΘFmn +

1

3
Θ̄γmnpΘF ′

0mnp

)

=

= Θ̄

{

i

16
γ0

p̌q̌Fxyzp̌q̌ +
i

8
(γ0x

p̌Fyzp̌ + γ0y
p̌Fzxp̌ + γ0z

p̌Fxyp̌) −
i

48
γp̌q̌řF ′

0xyzp̌q̌ř +

+
i

8
(γxyzF0 − γ0xyFz − γ0yzFx − γ0zxFy) −

− i

16
(γx

p̌q̌F ′
0yzp̌q̌ + γy

p̌q̌F ′
0zxp̌q̌ + γz

p̌q̌F ′
0xyp̌q̌) −

− i

8
(γxy

p̌F ′
z0p̌ + γyz

p̌F ′
x0p̌ + γzx

p̌F ′
y0p̌)

}

Θ (4.7)

which coincides with the quadratic action

SWZ = µ3

∫

d4ζ
√

detgǫĩj̃k̃l̃

(

1

4! · 48Θ̄Γ
ĩj̃k̃l̃

pqrΘF ′
pqr +

1

48
Θ̄Γ

ĩj̃k̃
ΘF

l̃
+

+
1

32
Θ̄Γĩj̃

pΘF ′
k̃l̃p

− 1

16 · 3! Θ̄Γĩ
pqΘF ′

j̃k̃l̃pq

)

. (4.8)

We have chosen the gauge, eq. (2.29), in constructing the D3 brane action. Agreement

with the D0 brane action shows that this agrees with the gauge choice, Γ11Θ = −Θ in the

IIA case. This point was already noted in [7].

As was mentioned in the introduction the action for branes upto quadratic order in

fermions in the presence of an arbitary on-shell background has already been derived by

Marolf, Martucci and Silva [10, 11]. These authors used the method of “normal coordinate

expansion” together with T-duality which is different from the method of gauge completion

used here. As we discuss below our results completely agree. This constitutes a significant

check of our results and methods.

The quadratic fermion terms in the action for a Dp brane are given in eq.(30) of [11].

We are interested in the case p = 3 here. Γ̃Dp
is defined in eq.(28) and Lp in eq.(29) of [11],

with Γφ = −σ3 in our notation. Also, Dm and ∆ are defined in eq.(84), (86) of [11]. y in

eq.(30) of [11] stands for the 32 component spinor that we call θ, with y1, y2 corresponding

to θ1, θ2 respectively . Let us for simplicity now set the world volume magnetic field to

zero. In the gauge y2 = 0, it is then easy to see that eq.(30) of [11] agrees completely with

the fermion bilinear terms obtained above, eq. (3.7), eq. (3.8), after identifying y1 with Θ

and the RR field strengths with each other upto a sign.

Finally, the world volume action of M5 brane in presence of background flux has been

constructed by Kallosh and Sorokin [9]. After a duality map this can be related to the D3

brane action computed here. We have compared with the fermion bilinear terms presented

in eq.(22) of [9] and find substantial agrement.2

2We are greatful to R. Kallosh and D. Sorokin for help in this regards.
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5. An example

5.1 Euclidean continuation

The discussion above was for a D3 brane in Minkowski space with signature (9, 1). Our

main interest here is in instanton corrections to the superpotential and for this purpose

we are really interested in euclidean space with signature (10, 0). We will not consider

time dependent backgrounds here and continuing the bosonic fields which appear in the

world volume theory eqs. (3.7) and (3.8), to euclidean space is straightforward. The world

volume theory also contains a 16 component Majorana Weyl fermion, Θ. This is continued

to a 16 component complex Weyl fermion in euclidean space.3 Fermion bilinear terms of

the form:

S =

∫

d4ξΘT Γ0MΘ , (5.1)

are continued to euclidean space by replacing Θ above by the Weyl fermion. The path

integral of the world-volume theory is then carried out over Θ alone. In particular Θ†

does not appear in the path integral as an independent degree of freedom. In this way no

further doubling of the fermionic degrees is introduced for the purposes of evaluating the

path integral [29].

5.2 The example

Now let us consider a specific example that will illustrate the role that fluxes can play in

changing the count of zero modes. We consider a T 6/Z2 compactification with flux [30, 31].

The six coordinates of torus are taken to be, xi, yi, i = 1, . . . , 3, with 0 ≤ xi, yi ≤ 1. The

Z2 orientifold symmetry involves a reflection in all six directions, (xi, yi) → −(xi, yi), i =

1, . . . , 3. Holomorphic coordinates are, Z i = xi + τijy
j, where τij determine the complex

structure of the torus. The tree-level superpotential takes the form, [32, 28],

Wtree =

∫

(F − ΦH) ∧ Ω3 (5.2)

where Φ = C + ie−φ is the axion-dilaton, and Ω3 is the holomorphic three-form which in

this case takes the form, Ω3 = dZ1 ∧ dZ2 ∧ dZ3.

We focus on one specific choice of flux: F and H:

F = dx1 ∧ dx2 ∧ dx3 + dy1 ∧ dy2 ∧ dy3

H = dx1 ∧ dx2 ∧ dx3 − 2dy1 ∧ dy2 ∧ dy3 − dx2 ∧ dx3 ∧ dy1 − dx3 ∧ dx1 ∧ dy2−
−dx1 ∧ dx2 ∧ dy3 + dy2 ∧ dy3 ∧ dx1 + dy3 ∧ dy1 ∧ dx2 + dy1 ∧ dy2 ∧ dx3 . (5.3)

This example was analysed in [30] and it was shown that as a result of the superpotential,

eq. (5.2), all the complex structure moduli of the torus as well as the axion-dilaton are

stabilized with a value

C + ie−φ = e
2πi
3 , τij = δije

2πi
3 . (5.4)

The supersymmetry is broken to N = 1 in the resulting vacuum.

3Note that there are no Majorana Weyl representations of SO(10).
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We are interested in possible non-perturbative corrections to the superpotential that

can arise in this N = 1 theory. Such corrections could arise due to euclidean D3 branes

wrapping divisor in T 6/Z2. A correction to the superpotential requires two fermionic zero

modes, no more or less, in the world volume theory of the euclidean D3 brane. Without

flux there are 16 fermionic zero modes. This is too many (the sixteen zero modes follow

from the N = 4 supersymmetry, present without flux, which also precludes a correction

to the superpotential). With flux we will see below that only four zero modes survive.

This is fewer in number, but still too many for a non-perturbative contribution to the

superpotential.

A general divisor takes the form, niZ
i = c, where ni are integers and c is a constant.

We first examine the divisor Z3 = c below. In this case the D3 wraps the x1, x2, y1, y2,

directions with x3, y3, held constant. For now we also exclude the special values, c =

0, 1/2i, 1/2, 1/2 + 1/2i. At these special values the Z2 orientifold symmetry relates points

on the divisor to each other. This complicates the analysis somewhat. Towards the end of

the section we will consider the more general divisor. Using the symmetries of the problem

we will find that the analysis can be mapped to the case when Z 3 = c, thus resulting in

the same number of zero modes.

We ignore the five-form flux also we set F − B on the world volume to zero.4 The

fermion bilinear term of the action then takes the form

S(Θ2) = −µ3

∫

d4ζe−φ
√

det g

(

1

48
Θ̄ΓmnpΘHmnp −

1

16
Θ̄ΓĩpqΘH ĩpq

)

+

+
µ3

32

∫

d4ζǫĩj̃k̃l̃

(

1

36
Θ̄Γ

ĩj̃k̃l̃
pqrΘF ′

pqr + Θ̄Γĩj̃
pΘF ′

k̃l̃p

)

. (5.5)

In this equation Θ is a Weyl fermion of SO(10) but Θ̄ actually stands for ΘT γ0, as was

explained above. We see that the flux gives rise to mass terms for the fermion Θ.

The flux, eq. (5.3) does not fix all the Kahler moduli. With the choice,

ds2 =

3
∑

a=1

r2
adzadz̄a (5.6)

it is easy to see that the Kahler moduli r2
a, contribute an overall multiplicative factor to

the mass terms above. Since our main goal is to count the zero modes here, we will work

with ra = 1 below.

Now let us write the mass terms above as,

S(Θ2) =
µ3

8

∫

d4ξ
√

detgΘ̄MΘ , (5.7)

where the matrix M is determined by the flux. We are interested in the number of zero

modes of M .

4For the flux, eq. (5.3), we can work in a gauge where the two-form RR gauge potential C(2) has non-zero

components, C(2)x1x3 , C(2)y1y3 . Since the brane extends along, x1, x2, y1, y2, there is then no source term

for F − B on the world volume and setting it to zero is consistent with the equations of motion for the

world volume gauge field.
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As we discuss in appendix A.6, it is convenient to work in the following basis for the

analysis. Label the 16 components of Θ as |ǫ1, ǫ2, ǫ3, a〉 where ǫi = ±1, i = 1, . . . , 3 refer to

the eigenvalues of Γx̂j ŷj

respectively.5 E.g.,

Γx̂1ŷ1 |ǫ1, ǫ2, ǫ3, a〉 = iǫ1|ǫ1, ǫ2, ǫ3, a〉 . (5.8)

And a = ±1 is an extra label (The SO(10) rotation group has a SO(4) × SO(6) subgroup

where the SO(6) refers to the compactified directions. The label a refers to the SO(4), it

takes only two values because the ten dimensional chirality is fixed.). Now it is easy to see

that M acts on the state, |ǫ1, ǫ2, ǫ3, a〉, as follows,

M |ǫ1, ǫ2, ǫ3, a〉 =

(

2√
3

)3

mΓŷ1ŷ2ŷ3 |ǫ1, ǫ2, ǫ3, a〉 , (5.9)

where,

m =
1

2

(√
3 + ǫ1ǫ2

) {

e−
iπ
3

(ǫ1+ǫ2+ǫ3) − 2 − e−
iπ
3

(ǫ1+ǫ2) − e−
iπ
3

(ǫ2+ǫ3) −

− e−
iπ
3

(ǫ3+ǫ1) + e−
iπ
3

ǫ1 + e−
iπ
3

ǫ2 + e−
iπ
3

ǫ3
}

+

+ǫ1ǫ2

(

1 + e−
iπ
3

(ǫ1+ǫ2+ǫ3)
)

. (5.10)

Our notation for the matrix Γŷ1ŷ2ŷ3
is defined in appendix A.6. We note here that

(Γŷ1 ŷ2ŷ3
)2 = −1 and thus Γŷ1ŷ2ŷ3 |ǫ1, ǫ2, ǫ3, a〉 cannot vanish. This means that the rhs

of eq. (5.9) can vanish only if m vanishes.

It is easy to see from eq. (5.10) that this happens when when ǫ1 = ǫ2 = ǫ3 = ±1. As

discussed in appendix A.6, this is the only choice of ǫ1, ǫ2, ǫ3 for which m vanishes. Since

a in addition can take values ±1, we get four zero modes in all.

This example illustrates the fact that fluxes can lift zero modes, although in this case

we see that the remaining number is still too large for a contribution to the superpotential.

5.3 Discussion

The analysis of zero modes in [3] cannot be directly applied to the example above, since the

M-theory lift of the T 6/Z2 orientifold is a space of reduced holonomy. Still, an analogous

index can be defined in this example. The U(1) symmetry here corresponds to rotations

in the plane formed by the x3, y3 directions. The U(1) charge of a zero mode is therefore

simply ǫ3. The graded index is then,

χ ≡
∑

(−1)ǫ3 , (5.11)

where the sum is over all the fermionic zero-modes. In the absence of flux, there are 8 zero

modes with ǫ3 = +1 and 8 with ǫ3 = −1 so this index vanishes. In the presence of flux,

there are 2 zero modes with charge ±1 each so again the index vanishes.

We see from eq. (5.3) that the three-form fluxes H,F have two legs along the divisor and

one normal to it, and so break the U(1) symmetry. In the basis above, the U(1) symmetry

5Here the ‘ˆ’ indicates that we are in the vierbein basis.
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relates the two states {|ǫ1, ǫ2,±ǫ3, a〉} to each other. And we see from appendix A.6, that

these states do get different masses, in accordance with the breaking of the symmetry.

The flux eq. (5.3) is invariant under the Z2 orientifold symmetry as required. In

this example there are additional Z2 symmetries as well, however. These involve invert-

ing the coordinates of only one of the torii, while keeping the other torii fixed. E.g.,

(x1, y1) → −(x1, y1) while keeping the other coordinates fixed. The two-forms, C2, B2 have

odd intrinsic parity under these Z2’s (as they do under the Z2 orientifold symmetry) and

thus the flux eq. (5.3) is invaraint under them. As a result of these additional symmetries,

the zero modes can only be lifted in pairs, with the states {|ǫ1ǫ2, ǫ3, a〉, | − ǫ1,−ǫ2,−ǫ3, a〉}
having the same mass.6 This explains why the index does not change after incorporating

the flux. In the more generic case of a Calabi-Yau space with flux, such additional symme-

tries would be absent while the feature that the flux breaks the U(1) symmetry continues

to be true, so one expects that the index can change after incorporating flux. Evidence for

this was already found in [4] for the case of M theory on K3 × K3. There it was argued

that for a divisor of the form K3×P 1, zero modes coming from h(2, 0) of the divisor, which

have the same U(1) charge, pair up amongst themselves and get heavy.

After turning on the flux, eq. (5.3), N = 1 supersymmetry is left unbroken in the

resulting vacuum. The D3 brane wrapping the divisor breaks some of these supersymme-

tries, and this gives rise to some zero modes in the D3 brane world volume theory. It would

be helpful to know which of the four zero modes we have found above are related to the

breaking of supersymmetry. We have not analysed this question in detail and leave it for

the future. Let us note in passing here that the conditions for supersymmetry imposed

by the D3 brane are independent of the three-form flux. In the absence of flux, half the

supersymmetries are left unbroken by the D3 brane wrapping a divisor, this suggests that

two of the four supersymmetries are broken by the D3 brane, and two of the four zero

modes are due to this partial breaking of supersymmetry.7

We have focussed on a specific divisor above, Z3 = c. The case when Z3 is replaced by

Z1, Z2 gives the same zero-mode count due to the symmetries of the flux, eq. (5.3). Also

in the discussion above we have excluded some special values, c = 0, 1/2i, 1/2, 1/2(1 + i).

The divisors for these values of c are special. The Z2 orientifold symmetry relates points

on the divisor to each other in these cases so the divisors are “half-cycles”. Starting with a

situation where the brane is away from one of these special values of c we can continuously

move it to the special values. The brane and its image under the Z2 orientifold symmetry

come together then. Since the brane can be moved continuously in this way we do not

expect the number of zero modes to jump. A more interesting possibility is that of a brane

without its image wraping one of these special divisors. This would be the analogue of

a fractional brane. It is tempting to speculate that the Z2 orientifold symmetry acts on

the fermions in this case and halves their number, resulting in two zero modes - just the

correct number for an instanton correction. Partial evidence for this comes from anomaly

considerations. Since the brane wraps a half-cycle its action depends only fractionally on

6More correctly we are interested in the eigenmodes of M †M . Both {|ǫ1ǫ2, ǫ3, a〉, |− ǫ1,−ǫ2,−ǫ3, a〉} are

eigenvectors of this operator with the same eigenvalues.
7We are grateful to Rudra Jena for a discussion in this regard.
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the Kahler modulus govering the volume of the four cycle and also depends only fractionally

on the axionic partner of this Kahler modulus. This suggests that the number of zero modes

is also halved. We have not fully explored this interesting case yet and hope to return to

it in the future.

A more general divisor has the form, niZ
i = c. As discussed towards the end of

appendix A.6, upto an overall rescaling of the mass matrix, the analysis for the more

general divisor can be mapped to the case where one of the three coordinates, Z 1, Z2 or

Z3 is a constant. Thus the discussion above applies and we learn (again with the possible

exception of some special values of c) that for the case of a more general divisor as well

there are four fermion zero modes.

Finally, the zero modes we have found are constant spinors which are zero modes of

the mass matrix, eq. (5.7). They are therefore zero modes of the Dirac operator,

6DΘ +
1

4
MΘ = 0 , (5.12)

since both term above vanish seperately acting on the zero modes. One could ask if there

are additional non-constant zero modes of the Dirac operator.8 Under a rescaling of the

volume of the internal space, gmn → λ2gmn (where now m,n take values only over the

six internal space directions) one finds that 6D → 1
λ
6D while M → 1

λ3 M . Thus at large

volume the first term, 6DΘ, is much more important and our approximation of starting

with constant spinors and seeking zero modes of M amongst them is justified. Additional

non-constant zero modes of the Dirac operator eq. (5.12) can be found in this example, but

in agreement with the argument just mentioned they always occur at a volume of order

the string scale. For such small volumes the α′ corrections are important and the analysis

is not trustworthy.9

6. Conclusions

In this paper we have used the method of gauge completion and determined the fermion

bilinear terms in the world volume action of a D3 brane in the presence of background flux.

Our results are summarised in eq. (3.7) and eq. (3.8). These results have been previously

obtained by Marolf, Martucci and Silva using somewhat different methods.

The fermion bilinear terms are of interest in calculating instanton corrections to the

superpotential in flux compactifications. They are also of interest in determining soft susy

breaking terms that can arise in flux compactifications.

For a euclidean D3 brane wrapping a divisor in a six dimensional compactification these

results explicitly show that the U(1) symmetry of rotations normal to the divisor is broken

in the presence of three-form flux. In an explcit example of a T 6/Z2 compactification with

three-form flux we have calculated the fermion mass terms and shown that many zero

modes are lifted due to the flux.

8We thank Renata Kallosh for a discussion of this issue.
9In other examples of a Calabi-Yau space with large orientifold charge the flux can be bigger and it

might be possible to have the two terms in eq. (5.12) comparable to each other when the volume is bigger

than the string scale.
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There are several directions of future work. One would like a better understanding

of supersymmetry in this context. This is connected to the number of zero modes in the

world volume of the D3 brane. More generally, one would like to use our results to calculate

the instanton corrections in situations where they can arise. Even in the simple example

studied here, of a T 6/Z2 compactification, our analysis is not complete and the case when

the D3 brane wraps a half-cycle needs to be understood better.

We hope to return to these questions in the future.
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A. Computational details

Our conventions are as follows.

Superspace coordinates are denoted by ZM = (xm, θµ), which stand for the bosonic

and fermionic components respectively. Curved space indices are given by {M,N, . . .} =

{m,n, . . . , µ, ν, . . .} where (m,n) denote Bosonic indices and (µ, ν) fermionic indices. Tan-

gent space indices are given by {A,B, . . .} = {a, b, . . . , α, β, . . .}, with (a, b) denoting

bosonic and (α, β) fermionic indices.

We will use real 16 component Majorana-Weyl spinors, a convenient basis of gamma

matrices is given in eq.(4.3.48), [33], in which Γ0 is antisymmetric and the remaining

gamma matrices, Γi, are symmetric. Since there are two 16 component Majorana-Weyl

spinors worth of supersymmetries in the IIB theory our spinors will carry an extra SO(2)

index. The spinor indices α, β, should be viewed as composite indices standing for the

tensor product of a Majorana-Weyl index and this additional SO(2) index. In the formulae

below the gamma matrices will act on the Majorana Weyl index while the Pauli spin

matrices, σ1, σ2, σ3, will act on the SO(2) index.

Throughout this paper, we denote antisymmetrisation with unit weight by a square

bracket. For example, the antisymmetrised product of an antisymmetric rank-two tensor

Amn with a rank one tensor Bp is,

A[mnBp] =
1

3
[AmnBp − ApnBm − AmpBn] . (A.1)

There are 3 distinct terms which appear on the rhs as shown. To make it of unit weight

we divide by the number of distinct terms, which accounts for the prefactor 1
3 . Finally,

Γm1···mn
= Γ[m1

· · ·Γmn], will denote the antisymmetrised product of n Gamma matrices.
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A.1 Supersymmetry transformations

With these conventions, the supersymmetric transformation rules in the string frame [34]

are given by10

δλ =
1

2
Γm∂mφǫ − 1

24
ΓmnpHmnpσ

3ǫ − 1

2
eφΓmFm(iσ2)ǫ − 1

24
eφΓmnpF ′

mnpσ
1ǫ

δψm = Dmǫ +
1

8
eφΓpΓmFp(iσ

2)ǫ − 1

8
ΓpqHmpqσ

3ǫ +

+
1

48
eφΓpqrΓmF ′

pqrσ
1ǫ +

1

16 · 5!e
φΓpqrstΓmF ′

pqrst(iσ
2)ǫ

δφ = ǭλ

δC = e−φǭσ1λ

δem
a = ǭΓaψm

δBmn = ǭσ3 (Γmψn − Γnψm)

δCmn = e−φǭσ1
(

Γmnλ − 2Γ[mψn]

)

+ CδBmn

δCmnpq = e−φǭ(iσ2)
(

Γmnpqλ − 4Γ[mnpψq]

)

+ 6C[mnδBpq] . (A.2)

Here F ′
3 and F ′

5 are the gauge invariant RR field strengths

F ′
3 = dC2 − CH3 , F ′

5 = dC4 − C2 ∧ H3 . (A.3)

Using these supersymmetry transformations, in the following sections we will compute

the the expansion of the superfields ĈMN , ĈMNPQ and êA
M , up to O(θ2), in terms of the

component fields.

A.2 Calculation for ĈMN

Following similar steps for the calculation of B̂MN in section 2.2, here we will carry out

the expansion of ĈMN to O(θ2). For this purpose, we must supply the superspace gauge

transformation Σ
(c)
M to O(θ), in addition to the super diffeomorphism (2.13).

Let us first evaluate the commutator of two supersymmetry transformations (with

parameters ǫ1, ǫ2) on the field Cmn. Using eq. (A.2) for the supersymmetry transformation

of Cmn we find that

δ1δ2Cmn = e−φǭ2

(

Γmnδ1λ − 2Γ[mδ1ψn]

)

+ Cδ1δ2Bmn . (A.4)

Using eq. (A.2) once more, it is straightforward to see that the commutator can be ex-

pressed as a diffeomorphism (with the parameter ξm as given by eq. (2.13)), and a gauge

transformation ξ
(c)
m . In other words

(δ1δ2 − δ2δ1)Cmn = ξp∂pCmn + ∂mξpCpn − ∂nξpCpm + ∂mξ(c)
n − ∂nξ(c)

m , (A.5)

with the gauge transformation parameter

ξ(c)
m = ξnCmn + e−φǭ2σ

1Γmǫ1 − Cǭ2σ
3Γmǫ1 . (A.6)

10Note that here our normalization for λ is different from ref. [34].
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In order to find the gauge transformation parameter, we have to compare eq. (A.5) with

the commutator derived in the superspace formalism. It is easy to see that

(δ1δ2 − δ2δ1)ĈMN =
(

∂MΣ
12(c)
N − (−1)MN∂NΣ

12(c)
N

)

+ · · · , (A.7)

where the dots denote terms arising due to superdiffeomorphism. The superspace gauge

transformation parameter Σ
12(c)
M is given by

Σ
12(c)
M =

(

ΣP
2 ∂P Σ

1(c)
M + ∂MΣP

2 Σ
1(c)
P

)

− (1 ↔ 2) . (A.8)

The commutator on component field Cmn will agree with the commutator on the superfield

Ĉmn if the gauge transformation parameter Σ
(c)
m takes the value

Σ(c)
m =

1

2
θ̄ΓnǫCmn +

1

2
θ̄
(

e−φσ1 − Cσ3
)

Γmǫ . (A.9)

The component fields Cmµ and Cµν are both zero to leading order and hence the commu-

tator of the two susy on them also vanishes. From this it is easy to see that the component

Σ
(c)
µ vanishes for the case when the the space time fermion backgrounds are set to zero.

Now let us compute the first order expansion for Ĉmn. Comparing the susy transfor-

mation for Cmn from eq. (A.2) with the superfield result δĈmn = ǫα∂αĈmn, we find

Ĉmn = Cmn + e−φθ̄σ1
(

Γmnλ − 2Γ[mψn]

)

+ 2Cθ̄Γ[mψn] . (A.10)

The expression for Ĉmµ can similarly be derived. Using the expression for the gauge

transformation (A.9) the superspace variation for Ĉmµ can be written as

δĈmµ = ǫα∂αĈmµ − 1

2
e−φ

(

ǭσ1Γm

)

µ
+

1

2
C

(

ǭσ3Γm

)

µ
. (A.11)

Since the component field susy transformation δCmµ = 0, the r.h.s. of eq. (A.11) has to be

equated to zero. This gives the expression

Ĉmµ =
1

2
e−φ

(

θ̄σ1Γm

)

µ
− 1

2
C

(

θ̄σ3Γm

)

µ
. (A.12)

With the help of this equation and the gauge transformation (A.9), we can write down the

variation of the superfield Ĉmn up to O(θ).

δĈmn = ǫα∂αĈmn − 2θ̄
(

e−φσ1 − Cσ3
)

Γ[m∂n]ǫ + θ̄
(

e−φσ1 − Cσ3
)

Γaǫ∂[men]a−

−1

2
ǭΓqθFqmn +

(

e−φǭσ1Γ[mθ∂n]φ + ǭσ3Γ[mθ∂n]C
)

. (A.13)

On the other hand, we can use eq. (A.10) for Ĉmn to arrive at

δĈmn = δCmn + e−φθ̄σ1
(

Γmnδλ − 2Γ[mδψn]

)

+ 2Cθ̄Γ[mδψn] . (A.14)

These two variations must be the same. When we plug in the susy transformations for ψm

and λ from eq. (A.2), we find that they will match up only when Ĉmn has the following

expression to second order in θ:

Ĉmn = Cmn + e−φθ̄σ1
(

Γmnλ − 2Γ[mψn]

)

+ 2Cθ̄Γ[mψn] +
1

4
e−φθ̄σ1Γmnpθ∂pφ+
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+
1

8
θ̄

(

e−φσ1 − Cσ3
) (

Γm
abωnab − Γn

abωmab

)

θ +
1

8
θ̄
(

σ3 − eφCσ1
)

ΓmnpθF p+

+
1

8
e−φθ̄(iσ2)ΓpθHmnp +

1

48
e−φθ̄(iσ2)Γmn

pqrθHpqr −
1

8
Cθ̄Γ[m

pqHn]pqθ−

−1

8
θ̄Γ[m

pqF ′
n]pqθ − 1

8
Ceφθ̄(iσ2)ΓpθF ′

mnp −
1

48
Ceφθ̄(iσ2)Γmn

pqrθF ′
pqr−

− 1

16 · 5! θ̄
(

σ3 + Ceφσ1
)

(

Γmn
pqrstF ′

pqrst + 20ΓpqrF ′
mnpqr

)

θ . (A.15)

A.3 Calculation for ĈMNPQ

Let us now turn to ĈMNPQ. The calculation is pretty much the same as the previous ones

for B̂MN and ĈMN . We will first evaluate the gauge transformation parameter ΣMNP from

the commutator of two susy transformation on the component field C4 and then use this

information to derive the O(θ2) expression for the superfield Ĉ4. From eq. (A.2) we find

δ1δ2Cmnpq = e−φǭ2(iσ
2)

(

Γmnpqδ1λ − 4Γ[mnpδ1ψq]

)

+ 12ǭ2σ
3C[mnΓpδ1ψq] . (A.16)

After some straightforward calculation, the commutator of two susy transformations can

be written as

(δ1δ2 − δ2δ1)Cmnpq = ǭ2

(

− 4e−φ(iσ2)∂[mφΓnpq] + ΓaF ′
amnpq + 4σ3Γ[mF ′

npq] +

+ 4σ1Γ[mHnpq] + 6C[mnΓaHpq]a

)

ǫ1 . (A.17)

This is equal to a diffeomorphism with diffeomorphism parameter ξm as given in eq. (2.11),

and a gauge transformation

dξ3 + d(H3 ∧ ξ(c)) ,

with the gauge transformation parameter ξ3 having the expression

ξmnp = ξqCmnpq + e−φǭ2(iσ
2)Γmnpǫ1 − 3C[mnǭ2σ

3Γp]ǫ1 . (A.18)

Now we can evaluate the commutator on the super field Ĉ4,

(δ1δ2 − δ2δ1)Ĉ4 = d
(

Σ12
3

)

+ · · · . (A.19)

Here again the dots denote the superdiffeomorphisms. The gauge transformation parameter

Σ12
3 can be written in terms of components as

Σ12
MNP =

[(

ΣQ
2 ∂QΣ1MNP + 3∂[MΣQ

2 Σ1NP ]Q

)

− (1 ↔ 2)
]

. (A.20)

Comparing the two commutators we can easily solve for the gauge transformation param-

eter Σmnp to obtain

Σmnp =
1

2
θ̄ΓqǫCmnpq +

1

2
e−φθ̄(iσ2)Γmnpǫ −

3

2
C[mnθ̄σ3Γp]ǫ . (A.21)

All the remaining components of ΣMNP will be zero.
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We now need to evaluate the expressions for Ĉmnpq and Ĉµmnp to O(θ). It is easy to

see that the variation δĈmnpq = ǫα∂αĈmnpq, and the susy transformation for Cmnpq from

eq. (A.2) gives

Ĉmnpq = Cmnpq + e−φθ̄(iσ2)
{

Γmnpqλ − 4Γ[mnpψq]

}

+ 12θ̄σ3C[mnΓpψq] . (A.22)

Using the expression for the gauge transformation (A.21), we can obtain the variation

δĈµmnp. Since Cµmnp vanishes to leading order, this variation has to be set to zero. As a

result, we get

Ĉµmnp = −1

2
e−φ

(

θ̄(iσ2)Γmnp

)

µ
+

3

2

(

C[mnθ̄σ3Γp]

)

µ
. (A.23)

It is easy to see that all the remaining components of ĈMNPQ vanishes. Now we are ready

to execute the second order results.Using the above expression for Ĉµmnp and the expression

for the gauge transformation parameter from eq. (A.21) we find the variation of Ĉmnpq to

be of the form

δĈmnpq = ǫα∂αĈmnpq +
1

2
θ̄ΓaǫFamnpq − 4H[mnpΣ

(c)
q] + 4∂[mǫαĈαnpq]+

+2∂[m

(

e−φθ̄(iσ2)Γnpq]ǫ
)

− 6∂[m

(

Cnpθ̄σ
3Γq]ǫ

)

. (A.24)

After substituting the expression for Σ
(c)
m and making some rearrangement we get

δĈmnpq = ǫα∂αĈmnpq +
1

2
θ̄Γaǫ(Famnpq − 4H[mnpCq]a) +

+2θ̄e−φσ1Γ[mǫHnpq] + 4∂[mǫαĈαnpq] +

+2θ̄
{

∂[m

(

e−φ(iσ2)Γnpq]ǫ
)

− 3C[np∂m

(

σ3Γq]ǫ
)

− F ′
[mnpσ

3Γq]ǫ
}

. (A.25)

We can also obtain the variation from eq. (A.22) for the expansion of Ĉmnpq to O(θ):

δĈmnpq = δCmnpq + e−φθ̄(iσ2)
{

Γmnpqδλ − 3Γ[mnpδψq]

}

+ 12θ̄σ3C[mnΓpδψq] . (A.26)

These two expressions must agree. This can be used to solve for Ĉmnpq to second order in

θ to obtain

Ĉmnpq = Cmnpq + e−φθ̄(iσ2)
{

Γmnpqλ − 4Γ[mnpψq]

}

+ 12θ̄σ3C[mnΓpψq]+

+
1

2
e−φθ̄(iσ2)Γab[mnpωq]

abθ + 3e−φθ̄(iσ2)Γ[pωqmn]θ +
1

4
e−φθ̄(iσ2)Γmnpq

s∂sφθ+

+
1

48
e−φθ̄σ1Γmnpq

stuHstuθ +
1

48
θ̄σ3Γmnpq

stuF ′
stuθ +

1

2
θ̄Γ[mnpFq]θ+

+
3

4
θ̄σ3Γ[mn

sF ′
pq]sθ +

3

4
e−φθ̄σ1Γ[mn

sHpq]sθ − 1

96
θ̄Γ[mnp

stuvF ′
q]stuvθ−

−1

8
θ̄Γ[m

stF ′
npq]stθ − 3

2
θ̄σ3C[mnΓp

abωq]abθ −

−3

4
eφC[mnθ̄

(

σ1Γpq]
sFs + e−φΓp

stHq]st + iσ2

{

ΓsF ′
pq]s +

1

6
Γpq]

stuF ′
stu

}

+

+
1

12
σ1

{

ΓstuF ′
pq]stu +

1

20
Γpq]

stuvwF ′
stuvw

})

θ . (A.27)
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A.4 The supervierbein

Finally we come to the computation of the vierbeins. A similar calculation can be performed

in this case also. Note that in addition to the superdiffeomorphism, here we have to consider

the (super) local Lorentz transformation (2.3). Let us first compute vierbeins to O(θ).

Equating δêa
m = ǫα∂αêa

m with δem
a = ǭΓaψm we find

êa
m = em

a + θ̄Γaψm . (A.28)

Similarly we can compute êa
µ to O(θ). using the value of Σm from eq. (2.13) we find,

êa
µ = −1

2

(

θ̄Γa
)

µ
. (A.29)

To obtain the Lorentz transformation parameter to O(θ), we need to compute the com-

mutator of two supersymmetry transformations on the vierbein em
a. This can be easily

computed using the susy transformations (A.2). After some simplification, we get

(δ2δ1 − δ1δ2) em
a = (ǭ1Γ

a∂mǫ2 − ǭ2Γ
a∂mǫ1) − ǭ1Γbǫ2ωm

ab +
1

4
eφǭ1Γ

ap
m(iσ2)ǫ2Fp−

−1

2
ǭ1Γqσ

3ǫ2Hm
aq +

1

24
eφǭ1Γ

apqr
mσ1ǫ2F

′
pqr +

1

4
eφǭ1Γqσ

1ǫ2F
′
m

aq
+

+
1

8 · 5!e
φǭ1Γ

apqrst
m(iσ2)F ′

pqrstǫ2 +
1

48
eφǭ1Γ

pqr(iσ2)ǫ2F
′
mapqr . (A.30)

The above equation can be written in the following simple form

(δ1δ2 − δ2δ1) em
a = ξn∂nem

a + (∂mξn)en
a + λabemb , (A.31)

provided the translation parameter ξn is given in eq. (2.11), and the rotation parameter

λab has the expression

λab = −ξnωn
ab +

1

2
ǭ2Γpσ

3ǫ1H
abp −

−1

4
eφǭ2

{

Γabp(iσ2)Fp +
1

6
Γabpqrσ1F ′

pqr + Γpσ
1F ′abp

+

+
1

2 · 5!Γ
abpqrst(iσ2)F ′

pqrst +
1

12
Γpqr(iσ

2)F ′abpqr

}

ǫ1 . (A.32)

In deriving (A.31) we have used the following identity obeyed by the spin connection and

the vierbein

enbωm
ab = embωn

ab + (∂men
a − ∂nem

a) . (A.33)

On the other hand, one can apply the commutator directly on the super vierbein as given

in eq. (A.28). This will be consistent with eq. (A.31) if the parameter Λab takes the form

Λab(ǫ) = −1

2
θ̄Γnǫωn

ab +
1

4
θ̄Γpσ

3ǫHabp −

−1

8
eφθ̄

(

Γabp(iσ2)Fp +
1

6
Γabpqrσ1F ′

pqr + Γpσ
1F ′abp

+

+
1

2 · 5!e
φΓabpqrst(iσ2)F ′

pqrst +
1

12
Γpqr(iσ

2)F ′abpqr

)

ǫ . (A.34)
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Now we are ready to compute the O(θ2) part of the super vierbein. Consider the variation

δêa
m = ΣP ∂P êa

m + ∂mΣP êa
P + ΛaP êmP

= ǫα∂αêa
m +

1

2
θ̄Γnǫ (∂nêa

m − ∂mêa
n) + θ̄Γa∂mǫ + Λabêmb . (A.35)

It should be equated with the variation coming from eq. (A.28),

δêa
m = δem

a + θ̄Γaδψm , (A.36)

from which it follows that

ǫα∂αêa
m = θ̄Γaδψ′

m − Λabemb −
1

2
θ̄Γnǫ (∂nem

a − ∂men
a) . (A.37)

Here the prime indicates the absence of ∂mǫ from susy variation of the gravitino. Again

using the formula for the supersymmetry transformations (A.2), the above expression can

easily be integrated. The super vierbein, up to O(θ2), takes the form

êa
m = em

a + θ̄Γaψm − 1

8
ωmcdθ̄Γ

acdθ +
1

16
eφθ̄(iσ2) (ΓmF a + ΓaFm − δa

mΓpFp) θ−

− 1

16
θ̄Γapqσ3θHmpq +

1

32
eφθ̄

(

ΓapqF ′
mpq + ΓmpqF

′apq)
σ1θ+

+
1

32 · 4!e
φθ̄

(

ΓapqrsF ′
mpqrs + ΓmpqrsF

′apqrs)
(iσ2)θ . (A.38)

A.5 T-duality

It is in fact possible to obtain the D3 brane action, starting with D0 brane action and

performing three T-dualities (say, along x, y, z). For simplicity, we assume the metric to

be diagonal along the directions on which we perform T-duality. Also we set Bxi = gxi = 0

(and similar relations for y and z directions). Here we summarize the rules for T-duality

along the direction x. See [35 – 37, 10, 11, 38] for the T-duality rules in presence of more

general background.

gxx =
1

jxx
gǐǰ = ǰiǰ

e2φ =
e2ϕ

jxx
H = H

F ′
n(x) = F ′

(n−1)

F ′
n = F ′

(n+1)(x)

γx = γx

γ ǐ = γ ǐ . (A.39)

Here we follow the notations of ref. [38]. In particular, F ′
n are gauge invariant RR field

strengths and also Fn(x) denotes an (n − 1) form whose components are given by

[

Fn(x)

]

i1···in−1
= [Fn]xi1···in−1

. (A.40)
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A.6 The mass matrix

In this section we will evaluate the fermion bilinear term due to the three form flux when

the three brane wraps a divisor of T 6. Here we will use the coordinates {xj , yj}, j = 1, . . . , 3

to parametrize the spatial directions of the torus and {x̂j , ŷj} for the corresponding tangent

space indices. Now consider the relevant part of the action as given in eq. (5.5):

S(Θ2) = −µ3

∫

d4ζe−φ
√

det gΘT Γ0

(

1

48
ΓmnpHmnp −

1

16
ΓĩpqHĩpq

)

Θ+

+
µ3

32

∫

d4ζ
√

det gǫĩj̃k̃l̃ΘTΓ0

(

1

36
Γ

ĩj̃k̃l̃
pqrF ′

pqr + Γĩj̃
pF ′

k̃l̃p

)

Θ . (A.41)

Here note that the first term in the second line vanishes for the case when the flux is turned

on only along the compact directions. As a result we get

S(Θ2) =
µ3

16

∫

d4ζ
√

det gΘT Γ0

(

e−φ

{

ΓĩpqHĩpq −
1

3
ΓmnpHmnp

}

+
1

2
ǫĩj̃k̃l̃Γĩj̃

pF ′
k̃l̃p

)

Θ .

(A.42)

In the following we will first consider the case when the three brane wraps the divisor

Z3 = constant and concentrate ourselves to the choice of flux as given by eq. (5.3). The

above action can be rewritten as

S(Θ2) =
µ3

16

∫

d4ζ
√

det g ΘT Γ0MΘ , (A.43)

with the matrix M defined to be

M =

(

e−φΓĩj̃pHĩj̃p +
1

2
ǫĩj̃k̃l̃Γĩj̃

pF ′
k̃l̃p

)

. (A.44)

The index p now take value only along directions orthogonal to the divisor.

It is convenient to choose a basis, where the components of Θ are labelled as

|ǫ1, ǫ2, ǫ3, a〉, where ǫj = ±1, j = 1, . . . , 3 refer to (−i times) the eigen values of Γx̂j ŷj

respectively.11 The label a = ±1 refers to the SO(4) subgroup of the rotation group

SO(10). Before proceeding, let us note here that from the commutation relations for the Γ

matrices it follows that Γŷ1ŷ2ŷ3
squares to −1 and as a result, Γŷ1ŷ2ŷ3 |ǫ1, ǫ2, ǫ3, a〉 can never

vanish.

We will now evaluate the matrix, M , eq. (A.44), in this basis. We start with the first

term, e−φΓijpHijp which arises from the DBI term. From eq. (5.3) it is easy to see that it

takes the form,

MDBI = e−φ
[

Γx1x2x3 − 2Γy1y2y3 − (Γx2x3y1
+ Γx3x1y2

+ Γx1x2y3
) +

+ (Γy2y3x1
+ Γy3y1x2

+ Γy1y2x3
)
]

. (A.45)

Here we note that the indices refer to the coordinate basis, which is different from the

vierbein basis.

11Here and in the following, the repeated index j in Γx̂j ŷj

as well as in
(

Γxj

Γyj
)

does not indicate a

summation over j.
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The metric, with ra in eq. (5.6) set to unity takes the form

ds2 =
∑

i

|dxi + τdyi|2 (A.46)

where τ = e
2πi
3 . A convenient choice of vierbeins is then

ex̂1

x1 = 1 , eŷ1

x1 = 0 , ex̂1

y1 = cos

(

2π

3

)

, eŷ1

y1 = sin

(

2π

3

)

. (A.47)

The Γ matrices in the vierbein basis and the coordinate basis are related to each other by

Γxi

= Γx̂i − cot

(

2π

3

)

Γŷi

, Γyi

= cosec

(

2π

3

)

Γŷi

,

Γxi = Γx̂i

, Γyi = cos

(

2π

3

)

Γx̂i

+ sin

(

2π

3

)

Γŷi

. (A.48)

In particular one finds that (Γyi

)2 = cosec2(2π
3 ) = 4

3 . After some more algebra we can then

write MDBI as,

MDBI = e−φ

{(

3

4

)3

Γx1
Γy1

Γx2
Γy2

Γx3
Γy3 −

−
(

3

4

)2
[

Γx2
Γy2

Γx3
Γy3

+ Γx1
Γy1

Γx2
Γy2

Γx1
Γy1

Γx3
Γy3

]

+

+
3

4

[

Γx1
Γy1

+ Γx2
Γy2

+ Γx3
Γy3

]

− 2

}

Γy1
Γy2

Γy3
. (A.49)

From eq. (A.48) we get that

(

Γxi

Γyi
)

|ǫ1, ǫ2, ǫ3, a〉 = cosec

(

2π

3

)(

Γx̂iŷi − cot

(

2π

3

))

|ǫ1, ǫ2, ǫ3, a〉

= cosec2

(

2π

3

)

e
iπ
3

ǫi |ǫ1, ǫ2, ǫ3, a〉 . (A.50)

It then follows that MDBI acting on the state |ǫ1, ǫ2, ǫ3, a〉 is

MDBI |ǫ1, ǫ2, ǫ3, a〉 =

(

4

3

)

M Γŷ1ŷ2ŷ3 |ǫ1, ǫ2, ǫ3, a〉 (A.51)

where,

M =
{

e−
iπ
3

(ǫ1+ǫ2+ǫ3) − 2 − e−
iπ
3

(ǫ1+ǫ2) − e−
iπ
3

(ǫ2+ǫ3) − e−
iπ
3

(ǫ3+ǫ1) +

+ e−
iπ
3

ǫ1 + e−
iπ
3

ǫ2 + e−
iπ
3

ǫ3
}

. (A.52)

Similarly we can evaluate the second term in eq. (A.44) which arises due to the WZ

terms,

MWZ =
1

2
ǫĩj̃k̃l̃Γp

ĩj̃
(F

k̃l̃p
− CH

k̃l̃p
) . (A.53)
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Here p takes values only over directions orthogonal to the divisor. It is easy to see that

with an appropriate choice of orientation for the divisor,12

1

2
ǫĩj̃k̃l̃Γĩj̃ |ǫ1, ǫ2, ǫ3, a〉 = ǫ1ǫ2Γ

k̃l̃|ǫ1, ǫ2, ǫ3, a〉 . (A.54)

Thus,

MWZ |ǫ1, ǫ2, ǫ3, a〉 = ǫ1ǫ2Γ
k̃l̃p(F

k̃l̃p
− CH

k̃l̃p
)|ǫ1, ǫ2, ǫ3, a〉 . (A.55)

A little more algebra then shows that this can be written as,

MWZ |ǫ1, ǫ2, ǫ3, a〉 =
4

3
√

3
ǫ1ǫ2{M + 1 + e−

iπ
3

(ǫ1+ǫ2+ǫ3)}Γŷ1ŷ2ŷ3 |ǫ1, ǫ2, ǫ3, a〉 (A.56)

Adding, eq. (A.51), eq. (A.56) we finally get that M acting on |ǫ1, ǫ2, ǫ3, a〉 is given by,

eq. (5.9).

As discussed above Γŷ1ŷ2ŷ3 |ǫ1, ǫ2, ǫ3, a〉 cannot vanish. Thus the zero modes of M can

only arise if m, eq. (5.10) vanishes. A quick inspection shows that this happens when

(ǫ1, ǫ2, ǫ3) all becomes either 1 or −1. Thus these values of (ǫ1, ǫ2, ǫ3) give rise to zero

modes. Also m does not vanish for any other choice of (ǫ1, ǫ2, ǫ3). Therefore there are no

other zero modes. Finally, one also finds that the two states |ǫ1, ǫ2, ǫ3, a〉 and |ǫ1, ǫ2,−ǫ3, a〉,
which are related by U(1) rotations in the x3 − y3 plane, have a different mass in general.

This is to be expected since the U(1) symmetry is broken by the flux as discussed in

section 5.

Let us also now briefly discuss the case of the more general divisor niZ
i = c. By

relabelling the Z i coordinates if necessary we can always take n3 6= 0. In this case it is

useful to choose coordinates, ψ1, ψ2, ψ3 which are related to the coordinates Z i as follows:

Z1 = n1ψ
3 + n3ψ

1

Z2 = n2ψ
3 + n3ψ

2

Z3 = −n1ψ
1 − n2ψ

2 + n3ψ
3 . (A.57)

ψ1, ψ2 are parallel to the divisor and ψ3 is orthogonal to it. The divisor in these coordinates

can be written as ψ3 = constant. The flux G = F − ΦH can be expressed as

G = const(dψ1 ∧ dψ2 ∧ dψ̄3 + dψ2 ∧ dψ3 ∧ dψ̄1 + dψ3 ∧ dψ1 ∧ dψ̄2) . (A.58)

Upto a constant this is exactly the form of G in the Z i coordinates. A further change of

variables,

ψ̃1 =
√

n2
3 + n2

1ψ
1 +

√

n2
3 + n2

2ψ
2

ψ̃2 =
√

n2
3 + n2

1ψ
1 −

√

n2
3 + n2

2ψ
2

ψ̃3 = ψ3 , (A.59)

12An opposite choice of orientation corresponds to a negative sign on the r.h.s below. This still gives the

same number of zero modes.

– 29 –



J
H
E
P
0
6
(
2
0
0
5
)
0
6
6

preserves the form of G, eq. (A.58). It also allows the metric to be written in diagonal

form as,

ds2 =
∑

i

r2
i |dψ̃i|2 . (A.60)

This is the same as the metric in the Z i coordinates we considered eq. (5.6). Thus the

analysis for the general divisor maps after a change of coordinates to the case Z 3 = c. And

we learn that for a general divisor also there are four fermion zero modes.
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