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1. Introduction

Cobordism was explicitly introduced by Lev Pontryagin in his seminal paper [15]. In [20] Thom showed 

that the cobordism groups could be computed by results of homotopy theory using the Thom complex 

construction. Later, Atiyah [2] showed that complex cobordism is a generalized cohomology theory. In 

Section 1 of [17], Quillen discussed geometric interpretation of complex cobordism rings. Following his 

definition, we define the complex orbifold (co)bordism groups and rings for the category of stable almost 

complex orbifolds. It seems that complex cobordism for orbifolds did not appear in the literature until now. 

However oriented cobordism of orbifolds is studied in [8] and [9].

In the pioneering paper [7], Davis and Januskiewicz introduced the topological counterpart of nonsingular 

projective toric varieties. They called this class of manifolds toric manifolds. Since “toric manifold” is used in 

algebraic geometry for “nonsingular toric variety”, Buchstaber and Panov [3] introduced the term “quasitoric 

manifold” instead. Quasitoric orbifolds are generalization of quasitoric manifolds and they are studied in [16]. 

An orbifold with quasitoric boundary is an orbifold with boundary where the boundary is a disjoint union 

of some quasitoric orbifolds.
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In this article we study the complex cobordism of quasitoric orbifolds. The article is organized as follows. 

In Section 2, we recall the definition of stable complex structure on an orbifold. In Section 3, we recall the 

definition of quasitoric orbifold, omniorientation on a quasitoric orbifold and equivariant classification of 

quasitoric orbifolds. Also we show that a quasitoric orbifold over a simplex is equivariantly homeomorphic 

to a complex orbifold projective space, see Lemma 3.9. In Section 4, we construct oriented orbifolds with 

quasitoric boundary. In Section 5, first we show that the orbifolds with quasitoric boundary which are 

constructed in Section 4 have stable complex structure, see Theorem 5.5. Then we show that a quasitoric 

orbifold is complex cobordant to finite disjoint copies of complex orbifold projective spaces, see Theorem 5.6. 

This process produces explicit complex cobordism relations among quasitoric orbifolds. We show that the set 

of all complex orbifold cobordism classes of complex orbifold projective spaces is not linearly independent, 

see Observation 5.8. Note that this is in contrast to manifold case. As a particular case when the orbifold 

singularity is trivial, we get explicit complex cobordism relations among quasitoric manifolds. At the end 

of Section 5, we give some sufficient conditions to the famous problem of Hirzebruch which asks when 

a complex cobordism class in the complex cobordism ring ΩU for manifolds may contain a connected 

nonsingular algebraic variety. In [21], Andrew Wilfong gives some necessary condition of this problem up to 

dimension 8. We also compute the Chern numbers of a quasitoric manifold over a simplex, see Example 5.10.

2. Orbifolds

Orbifolds were introduced by Satake [19], who called them V -manifolds. An orbifold is a singular space 

that is locally look like a quotient of an open subset of Euclidean space by an action of a finite group. The 

readers are referred to the Section 1.1 in [1] for the definition and basic facts concerning effective orbifolds. 

Also they may see [12] for an excellent exposition of the foundation of the theory of the reduced differentiable 

orbifolds.

Similarly as the definition of manifold with boundary, we can talk about orbifold with boundary, see 

Definition 1.3 in [8]. In this article Druschel studies the orientation on orbifolds in Section 1.

Many concepts in orbifold theory are defined in the context of groupoid, see [1] to enjoy this approach. 

For example, Section 2.3 in [1] talks about orbifold vector bundle in the language of groupoid. Most relevant 

example of the orbibundle of an orbifold is its tangent bundle. An explicit description of the tangent bundle 

of an effective orbifold is given in Section 1.3 of [1].

Definition 2.1. Let Y be a smooth orbifold with the tangent bundle (TY, pY , Y ) where pY : TY → Y is the 

projection map.

(1) An almost complex structure on Y is an endomorphism J : TY → TY such that J2 = −Id.

(2) A stable almost complex (or stable complex) structure on Y is an endomorphism

J : TY ⊕ (Y × Rk) → TY ⊕ (Y × Rk) (2.1)

such that J2 = −Id for some positive integer k.

3. Quasitoric orbifolds

In this section we review the definition of quasitoric orbifold following [16]. We also discuss several 

results on quasitoric orbifolds. An n-dimensional simple polytope in Rn is a convex polytope where exactly 

n bounding hyperplanes meet at each vertex. A facet is a codimension one face of a convex polytope. If 

P is a convex polytope then we denote the set of all facets of P by F(P ). Let Tn = (Zn ⊗Z R)/Zn and 

TM = (M ⊗Z R)/M for a free Z-module M .



388 S. Sarkar / Topology and its Applications 194 (2015) 386–399

Definition 3.1. A 2n-dimensional quasitoric orbifold X is a smooth orbifold with a Tn-action, such that the 

orbit space is (diffeomorphic as manifold with corners to) an n-dimensional simple polytope P . Denote the 

projection map from X to P by π: X → P . Furthermore every point x ∈ X has

A1) a Tn-invariant neighborhood V ,

A2) an associated free Z-module M of rank n with an isomorphism θ: TM → U(1)n and an injective module 

homomorphism ι: M → Zn which induces a surjective covering homomorphism ιM : TM → Tn,

A3) an orbifold chart (W, G, η) over V where W is θ-equivariantly diffeomorphic to an open set in Cn, 

G = kerιM and η: W → V is an equivariant map i.e. η(t · y) = ιM (t) · η(y) inducing a homeomorphism 

between W/G and V .

Note that this definition is a generalization of the axiomatic definition of a quasitoric manifold, see 

Section 1 in [7]. Let P be an n-dimensional simple polytope and F(P ) = {P1, . . . , Ps}.

Definition 3.2. A function ξ: F(P ) → Zn is called a di-characteristic function if the vectors ξ(Pj1
), . . . , ξ(Pjl

)

are linearly independent over Z whenever the intersection of the facets Pj1
, . . . , Pjl

is nonempty.

The vector ξj = ξ(Pj) is called the di-characteristic vector corresponding to the facet Pj and the pair 

(P, ξ) is called a characteristic model on P .

Remark 3.3. If the set {ξ(Pj1
), . . . , ξ(Pjl

)} is a part of a basis of Zn over Z whenever the intersection of the 

facets Pj1
, . . . , Pjl

is nonempty, then the map ξ is called characteristic function on P , see Section 1 of [7].

In Subsection 2.1 of [16], the authors construct a quasitoric orbifold from the characteristic model (P, ξ). 

Also given a quasitoric orbifold we can associate a characteristic model to it up to choice of signs of 

di-characteristic vectors.

Example 3.4. Let S2n+1 = {(z0, . . . , zn) ∈ Cn+1: |z0|2 + · · · + |zn|2 = 1} and a0, . . . , an be coprime positive 

integers. Then a weighted action of the circle S1 on S2n+1 is given by

α · (z0, . . . , zn) = (αa0z0, . . . , αnzn) for α ∈ S1.

The orbit space WP(a0, . . . , an) = S2n+1/S1 is called a weighted projective space. Since a0, . . . , an are 

coprime integers, the vector a = (a0, . . . , an) ∈ Zn+1 determines a circle subgroup S1
a

of Tn+1. Then the 

natural Tn+1-action on S2n+1 induces an action of Tn ∼= Tn+1/S1
a

on WP(a0, . . . , an). With respect to this 

Tn-action, WP(a0, . . . , an) is a quasitoric orbifold over an n-simplex. For an integer a > 1, the space WP(1, a)

is called the teardrop. The characteristic model for the teardrop is given by ([0, 1], ξ) where ξ({0}) = −1

and ξ({1}) = a (possibly up to sign). ✷

Definition 3.5. Let δ: Tn → Tn be an automorphism. Two quasitoric orbifolds X1 and X2 over the same 

polytope P are called δ-equivariantly homeomorphic if there is a homeomorphism f : X1 → X2 such that 

f(t · x) = δ(t) · f(x) for all (t, x) ∈ Tn × X1.

The automorphism δ induces an automorphism δ∗ of Zn. For the automorphism δ, two characteristic 

models (P, ξ) and (P, η) are called δ-equivalent if there is a diffeomorphism ψ : P → P (as manifold with 

corners) such that η(ψ(F )) = ±δ∗(ξ(F )) for all F ∈ F(P ). If δ is identity, then (P, ξ) and (P, η) are 

called equivalent. The following proposition is a classification result which can be found in [3] for quasitoric 

manifolds (Proposition 5.14) and in [16] for quasitoric orbifolds (Lemma 2.2).

Proposition 3.6. For an automorphism δ of the torus Tn, there is a bijection between δ-equivariant homeo-

morphism classes of quasitoric orbifolds over P and δ-equivalent classes of characteristic models on P .
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Suppose δ is the identity automorphism of Tn. Proposition 3.6 implies that two quasitoric orbifolds over 

P are equivariantly homeomorphic if and only if their di-characteristic models are equivalent.

Let X be a quasitoric orbifold with the orbit map π: X → P . There are important closed Tn-invariant 

suborbifolds of X which are corresponding to the faces of P . If F is a codimension k face of P , then define 

X(F ) = π−1(F ). The space X(F ) with subspace topology is a quasitoric orbifold of dimension 2n − 2k. If 

F is a facet of P then X(F ) is called a characteristic suborbifold of X. Note that a choice of orientation on 

Tn and P give an orientation on the orbifold X.

Definition 3.7. An omniorientation of a quasitoric orbifold X is a choice of orientation for X as well as an 

orientation for each characteristic suborbifold of X.

Clearly the isotropy group of a characteristic suborbifold is a circle subgroup of Tn. So there is a nat-

ural S1-action on the normal bundle (possibly an orbibundle) of that characteristic suborbifold. Thus the 

normal bundle has a complex structure and consequently an orientation. Whenever the sign of the charac-

teristic vector of a facet is reverse, we get the opposite orientation on the normal bundle. An orientation 

on the normal bundle together with an orientation on X induces an orientation on the characteristic sub-

orbifold. So a di-characteristic function determines a natural omniorientation. We call this omniorientation 

the characteristic omniorientation.

A toric variety XΣ associated to the simplicial fan Σ is called a toric orbifold. The space XΣ is compact 

if and only if Σ is complete. More about toric varieties can be found in [6].

Definition 3.8. Let Σ be a complete simplicial fan in Rn with n + 1 many one-dimensional cones. The 

associated toric orbifold XΣ is called a 2n-dimensional complex orbifold projective space.

Lemma 3.9. Let X be a quasitoric orbifold over △n. Then X is equivariantly homeomorphic to a 

2n-dimensional complex orbifold projective space.

Proof. Let X be a quasitoric orbifold over △n and F(△n) = {F0, . . . , Fn}. Let

ξ : F(△n) → Zn

be the associated di-characteristic function. Suppose ξi = ξ(Fi) for i = 0, . . . , n. So {ξ0, . . . , ξ̂i, . . . , ξn} is a 

linearly independent set in Zn for i = 0, . . . , n where ̂ represents the omission of the corresponding entry. 

Let

ξ0 = a1ξ1 + · · · + anξn

for some a1, . . . , an ∈ Q. Then ai �= 0 for all i ∈ {1, . . . , n}. Suppose ai1
, . . . , ail

∈ Q>0. Define η: : F(△n) →

Zn by

η(Fj) =

{
−ξj if j ∈ {i1, . . . , il}

ξj if j ∈ {0, . . . , n} − {i1, . . . , il}.
(3.1)

Let ηj = η(Fj) for j = 0, . . . , n and

bj =

{
−aj if j ∈ {i1, . . . , il}

aj if j ∈ {0, . . . , n} − {i1, . . . , il}.

So bj < 0 for j = 1, . . . , n and η0 = b1η1 + · · · + bnηn. Therefore η0, . . . , ηn are the one-dimensional cones 

of a complete simplicial fan Σ in Rn. Let XΣ be the associated toric orbifold. So XΣ is a complex orbifold 
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projective space. With respect to the compact n-torus action on XΣ, it is a quasitoric orbifold where the 

corresponding characteristic model is (△n, η). Therefore by Proposition 3.6, X and XΣ are equivariantly 

homeomorphic. ✷

Fake weighted projective space is a holomorphic generalization of weighted projective space, see [10]. 

A 2n-dimensional fake weighted projective space is defined by a complete simplicial fan generated by n + 1

many primitive vectors in Zn. So a fake weighted projective space is a complex orbifold projective space. 

Since the primitive vectors in Z are −1 and 1, the teardrop WP(1, a) is not a fake weighted projective space 

if a > 1. But WP(1, a) is a complex orbifold projective space.

4. Construction of orbifolds with quasitoric boundary

In this section we construct some oriented orbifolds with quasitoric boundary. This construction is a 

generalization of the construction of manifolds with quasitoric boundary of Section 4 in [18].

Definition 4.1. An (n + 1)-dimensional simple polytope Q in Rn+1 is said to be polytope with exceptional 

facets {Q1, . . . , Qk} if Qi ∩ Qj is empty for i �= j with 1 ≤ i, j ≤ k and V (Q) = ∪k
i=1V (Qi). We denote 

{Q\Q1, . . . , Qk} for a simple polytope with exceptional facets.

Let F(Q) = {F1, . . . , Fm} ∪ {Q1, . . . , Qk} be the facets of Q where {Q1, . . . , Qk} are the exceptional 

facets.

Definition 4.2. A function λ: {F1, . . . , Fm} → Zn is called an isotropy function on {Q\Q1, . . . , Qk} if the 

vectors λ(Fi1
), . . . , λ(Fiq

) are linearly independent in Zn whenever the intersection of the facets Fi1
, . . . , Fiq

is nonempty. The vector λi = λ(Fi) is called an isotropy vector assigned to the facet Fi for i = 1, . . . , m.

We define the isotropy function on some polytopes with exceptional facets in Example 4.6.

Remark 4.3. Since Zn is not the union of finitely many proper submodules over Z, we can define the isotropy 

function on any polytope with exceptional facets.

We adhere the notations of Definition 4.2. Let F be a codimension l face of Q with 0 < l ≤ n +1. If F is a 

face of Qi for some i ∈ {1, . . . , k}, then F is the intersection of a unique collection of l facets Fi1
, . . . , Fil−1

, Qi

of Q. Otherwise, F is the intersection of a unique collection of l facets Fi1
, . . . , Fil

∈ {F1, . . . , Fm} of Q. Let

M(F ) =

{
〈{λij

: j = 1, . . . , l − 1}〉 ⊆ Zn if F = Fi1
∩ · · · ∩ Fil−1

∩ Qi

〈{λij
: j = 1, . . . , l}〉 ⊆ Zn if F = Fi1

∩ · · · ∩ Fil

(4.1)

where 〈{αi : i = 1, . . . , s}〉 denotes the submodule generated by the vectors {αi: i = 1, . . . , s} of Zn. So

TM(F ) = (M(F ) ⊗Z R)/M(F ) (4.2)

is a compact torus of dimension l − 1 or l depending on the situation of the face F . Adopt the convention 

that TM(Q) = 1 = TM(Qi) for i = 1, . . . , k. The inclusion M(F ) →֒ Zn induces a natural homomorphism

fF :TM(F ) → Tn

for any face F of Q. Denote the image of fF by Im(fF ). Define an equivalence relation ∼b on the product 

Tn × Q as follows,
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(t, x) ∼b (u, y) if and only if x = y and tu−1 ∈ Im(fF ) (4.3)

where F is the unique face of Q containing y in its relative interior. We denote the quotient space (Tn×Q)/ ∼b

by W (Q, λ) and the equivalence class of (t, x) by [t, x]∼b . The space W (Q, λ) is a Tn-space where the action 

is induced by the group operation in Tn. Let

q: W (Q, λ) → Q

be the projection map defined by q([t, x]∼b) = x. We consider the standard orientation of Tn and the 

orientation of Q induced from the ambient space Rn+1.

Lemma 4.4. The space W (Q, λ) is a (2n + 1)-dimensional oriented orbifold with boundary and the boundary 

is a disjoint union of 2n-dimensional quasitoric orbifolds.

Proof. Let Cj = {F : F is a face of Q and F ∩ Qj is empty} and

Uj = Q − ∪F ∈Cj
F

for j = 1, . . . , k. Since Q is a simple polytope, Uj is diffeomorphic as manifold with corners to Qj × [0, 1)

and Q = ∪k
j=1Uj . Let

fj : Uj → Qj × [0, 1)

be a diffeomorphism. Note that the facets of Qj are {Qj ∩ Fj1
, . . . , Qj ∩ Fjl

} for some facets Fj1
, . . . , Fjl

∈

{F1, . . . , Fm}. The restriction of the isotropy function λ on the facets of Qj is given by

ξj(Qj ∩ Fji
) = λji

for i = 1, . . . , l.

By definition of λ, we can see that ξj is a di-characteristic function on Qj . So by Subsection 2.1 of [16]

the space X(Qj , ξj) = (Tn × Qj)/ ∼b is a 2n-dimensional quasitoric orbifold for j = 1, . . . , k. From the 

equivalence relation ∼b in (4.3), we have the following commutative diagram where lower horizontal maps 

are homeomorphisms.

Tn × Uj

Id×fi

−−−−→ Tn × Qj × [0, 1)
⏐⏐�

⏐⏐�

(Tn × Uj)/ ∼b

hi

−−−−→ ((Tn × Qj)/ ∼b) × [0, 1)
∼=

−−−−→ X(Qj , ξj) × [0, 1).

So

W (Q, λ) =
k⋃

j=1

(T n × Uj)/ ∼b
∼=

k⋃

j=1

(X(Qj , ξj) × [0, 1)).

Hence W (Q, λ) is an orbifold with boundary where the boundary is the disjoint union of quasitoric orbifolds 

{X(Qj , ξj): j = 1, . . . , k}. Clearly orientations of Tn and Q induce an orientation of W (Q, λ). ✷

Suppose λ satisfies the following condition: the set of vectors {λ(Fi1
), . . . , λ(Fil

)} is a part of a basis of Zn

over Z whenever the intersection of the facets {Fi1
, . . . , Fil

} is nonempty. Then all the quasitoric orbifolds 

in the proof of Lemma 4.4 are quasitoric manifolds. So, in this case we have the following corollary.
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Fig. 1. Isotropy functions of some polytopes with exceptional facets.

Corollary 4.5. With the assumption in the above paragraph, the space W (Q, λ) is a (2n + 1)-dimensional 

oriented manifold with boundary. The boundary is a disjoint union of quasitoric manifolds.

Example 4.6. Some isotropy functions on the polytopes Q and Q′ with exceptional facets are given in the 

Fig. 1. In the left picture of Fig. 1, Q1, Q2, Q3, Q4 are exceptional facets which are triangles. The restriction 

of the isotropy function on Qi gives that the space (T2 × Qi)/ ∼b is a complex orbifold projective space for 

i ∈ {1, 2, 3, 4}. So W (Q, λ) is an oriented orbifold with boundary where the boundary is the disjoint union 

of distinct 4-dimensional complex orbifold projective spaces.

In the right picture of Fig. 1, Q1, Q2, Q3, Q4 and Q5 are exceptional facets where Q1, . . . , Q4 are triangles 

and Q5 is a rectangle. The restriction of the isotropy function on Qi gives that the space Mi = (T2 ×Qi)/ ∼b

is a complex orbifold projective space for i ∈ {1, 2, 3, 4} and X(Q5, λ5) = (T2 × Q5)/ ∼b is a quasitoric 

orbifold. Hence the space ⊔4
i=1Mi ⊔ X(Q5, λ5) is the boundary of the oriented orbifold W (Q′, λ). ✷

5. Stable complex structure and complex cobordism

Stable complex structure of quasitoric manifolds and quasitoric orbifolds are studied in [7] and [16] re-

spectively. In this section first we show the existence of stable complex structure on orbifolds with quasitoric 

boundary W (Q, λ). Then we compute the complex orbifold cobordism class of a quasitoric orbifold explic-

itly. At the end of this section we give some computation in ΩU . Similarly as the manifolds case, we may 

define complex cobordism of orbifolds.

Definition 5.1. Let Y be a topological space and X1, X2 be two n-dimensional stable complex orbifolds. Let 

hi: Xi → Y be a continuous map for i = 1, 2. Then h1 and h2 are bordant if there exists a stable complex 

orbifold Z of dimension n +1 with ∂Z = X1 ⊔X2 and a continuous map H: Z → Y such that H|∂Z = h1 ⊔h2.

So the Definition 5.1 induces an equivalence relation on the collection

{(X, h): X is a stable complex orbifold and h: X → Y is a continuous map}.

We denote the equivalence class of (X, h) by [X, h] or [X] if the map h and the stable complex structure 

on X are clear. Let OBU
n (Y ) = {[X, h]: dim X = n}. The disjoint union induces an abelian group structure 

on OBU
n (Y ). The group OBU

n (Y ) is called the n-th complex orbifold bordism group of Y . Let OBU
∗

(Y ) =

∪nOBU
n (Y ). Then the Cartesian product endows the structure of a graded ring on OBU

∗
(Y ), called the 

complex orbifold bordism ring of Y .
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Definition 5.2. The complex orbifold bordism groups and ring of a point are called complex orbifold cobor-

dism groups and ring respectively.

At this moment we do not know about the generators of the group OBU
n (Y ) as well as many other 

questions which may arise from the theory of complex cobordism for manifolds. However the complex 

cobordism ring ΩU is a subring of OBU
∗

(pt). We adhere the notations of Section 4.

Lemma 5.3. The orbifold with boundary W (Q, λ) is an orbit space of a circle action on a quasitoric orbifold.

Proof. Let {Q\Q1, . . . , Qk} be a simple (n + 1)-polytope with exceptional facets and

F(Q) = {Fi: i = 1, . . . , m} ∪ {Qj : j = 1, . . . , k}.

Let λ be an isotropy function on {Q\Q1, . . . , Qk}. We define a function η: F(Q) → Zn+1 as follows,

η(F ) =

{
(0, . . . , 0, 1) ∈ Zn+1 if F = Qj and j ∈ {1, . . . , k}

(λi, 0) ∈ Zn × {0} ⊂ Zn+1 if F = Fi and i ∈ {1, . . . , m}.
(5.1)

So the function η is a di-characteristic function on Q. Let X(Q, η) be the quasitoric orbifold constructed 

from the characteristic model (Q, η). There is a natural Tn+1-action on X(Q, η), see Subsection 2.1 of [16]. 

Let

πQ: X(Q, η) → Q (5.2)

be the orbit map of this action and TQ be the circle subgroup of Tn+1 determined by the submodule 

{0} × . . . × {0} ×Z of Zn+1. From the definition of η it is clear that W (Q, λ) is the orbit space of the circle 

TQ action on X(Q, η). ✷

Remark 5.4. The quotient map φQ: X(Q, η) → W (Q, λ) is not a fiber bundle map.

Theorem 5.5. Let {Q\Q1, . . . , Qk} be a simple (n + 1)-polytope with exceptional facets in Rn+1 and λ be 

an isotropy function on {Q\Q1, . . . , Qk}. Then there is a stable complex structure on W (Q, λ). Moreover 

[X(Q1, ξ1)] + · · · + [X(Qk, ξk)] = 0 in OBU
2n(pt) where ξi is the restriction of the isotropy function λ on the 

facets of Qj for j = 1, . . . , k.

Proof. We construct a di-characteristic model (Q, η) from the pair (Q, λ), see Equation (5.1). Let X(Q, η)

be the quasitoric orbifold constructed from the characteristic model (Q, η), see Subsection 2.1 of [16]. Let 

X1, . . . , Xm be the characteristic suborbifolds of X(Q, η) and the omniorientation of X(Q, η) be the char-

acteristic omniorientation. By Section 6 of [16], this omniorientation determines a stably complex structure 

on X(Q, η) by means of the following isomorphism of orbifold real 2m-bundles

T (X(Q, η)) ⊕ R2(m−n−1) ∼= ρ1 ⊕ · · · ⊕ ρm (5.3)

where the orbifold complex line bundles ρi’s can be interpreted in the following way. The orientation of 

the orbifold normal bundle μi over the characteristic suborbifold Xi defines a rational Thom class in the 

cohomology group H2(T(μi), Q), represented by a complex line bundle over the Thom complex T(μi). We 

pull this back along the Pontryagin–Thom collapse X(Q, η) → T(μi), and denote the resulting orbibundle 

by ρi.

Cut off a neighborhood of each facets Qj of Q by an affine hyperplane Hj in Rn+1 for j = 1, . . . , k such 

that Hi ∩ Hj ∩ Q is empty for i �= j, 1 ≤ i, j ≤ k. Then the remaining subset of Q, denoted by QP , is 
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an (n + 1)-dimensional simple polytope which is naturally diffeomorphic as manifold with corners to Q. 

Suppose

QHj
= Q ∩ Hj = Hj ∩ QP

for j = 1, . . . k. Then QHj
is a facet of QP for each j ∈ {1, . . . , k}. Note that QHj

is diffeomorphic as manifold 

with corners to Qj for j = 1, . . . , k. Clearly, W (QP , λ) = (Tn × QP )/ ∼b is equivariantly diffeomorphic to 

W (Q, λ). Let W be the pullback of the following diagram:

W −−−−→ X(Q, η)

πv

⏐⏐� πQ

⏐⏐�

QP

ι
−−−−→ Q.

(5.4)

Then W = W (QP , λ) × TQ where TQ is the circle subgroup of Tn+1 determined by the vector (0, . . . , 0, 1)

in Zn+1 and πQ is given in Equation (5.2). We have the following commutative diagrams of complex 

orbibundles.

E3 −−−−→ E2 −−−−→ E1 −−−−→ T (X(Q, η)) ⊕ R2(m−n−1)

⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

X(Qi, ξi) −−−−→ W (QP , λ) −−−−→ W −−−−→ X(Q, η)

(5.5)

where E1, E2 and E3 are the pullback bundles. Since W = W (QP , λ) ×TQ, we have the following isomorphism 

of bundles:

E2
∼= T (W (QP , λ)) ⊕ R2(m−n)−1.

Hence for a choice of sign of isotropy vectors of {Q\Q1, . . . , Qk} the orbifold with boundary W (Q, λ) has a 

stable complex structure.

Observe that the bundle E3 is isomorphic to

T (X(Qi, ξi)) ⊕ R2(m−n) ∼= ρi1
⊕ · · · ⊕ ρil

⊕ R2(m−l) (5.6)

where ρij
is the complex line bundle corresponding to the ij-th characteristic suborbifold of X(Qi, ξ

i). Hence 

[X(Q1, ξ1)] + · · · + [X(Qk, ξk)] = 0 in the orbifold complex cobordism group OBU
2n(pt). ✷

Theorem 5.6. Let X be a 2n-dimensional omnioriented quasitoric orbifold over the simple polytope P . Then 

[X] = [M1] + · · · + [Mk] in OBU
2n(pt), where M1, . . . , Mk are complex orbifold projective spaces.

Proof. Let F(P ) = {F1, . . . , Fm} be the facets and {v1, . . . , vk} be the vertices of P ⊂ Rn. Let Q = P ×[0, 1]. 

So Q is an (n + 1)-dimensional simple polytope in Rn+1. Cut off a neighborhood of each vertex vj × {0} of 

Q by an affine hyperplane Hj for j = 1, . . . , k in Rn+1 such that

Hi ∩ Hj ∩ Q is empty for i �= j, and Hj ∩ P is empty for i, j ∈ {1, . . . , k}.

Then the remaining subset of Q, denoted by QP , is an (n + 1)-dimensional simple polytope. Observe that 

△n
i = Q ∩ Hi = Hi ∩ QP is a facet of QP . Also △n

i is an n-dimensional simplex in Rn+1 for i = 1, . . . , k. So 

{QP \P × {1}, △n
1 , . . . , △n

k} is an (n + 1)-dimensional simple polytope with exceptional facets. Let
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Fig. 2. An isotropy function on a 2-polytope with exceptional facets.

F 0 = QP ∩ (P × {0}), and F i = QP ∩ (Fi × [0, 1]) for i = 1, . . . , m.

So F(QP ) = {F i: i = 0, . . . , m} ∪ {P × {1}, △n
1 , . . . , △n

k}.

Let ξ: F(P ) → Zn be the di-characteristic function associated to the omniorientation of X. Let E(P )

be the set of all edges of P and e ∈ E(P ). Then e = Fi1
∩ · · · ∩ Fin−1

for a unique collection of facets 

Fi1
, . . . , Fin−1

of P . Let Z(e) be the submodule of Zn generated by {ξ(Fi1
), . . . , ξ(Fin−1

)}. So Z(e) is a free 

Z-module of rank n − 1 for any e ∈ E(P ). From Remark 4.3, there exists λ0 ∈ Zn − ∪e∈E(P )Z(e). So λ0 is 

nonzero and {λ0, ξ(Fi1
), . . . , ξ(Fin−1

)} is a linearly independent set in Zn for the edge e = Fi1
∩ · · · ∩ Fin−1

. 

Define λ: {F i: i = 0, . . . , m} → Zn by

λ(F ) =

{
ξ(Fi) if F = F i

λ0 if F = F 0.
(5.7)

So the function λ is an isotropy function on {QP \P × {1}, △n
1 , . . . , △n

k}. Let

ξj : F(△n
j ) → Zn

be the restriction of λ on the facets of △n
j for j = 1, . . . , k. Then (△n

j , ξj) is a characteristic model for 

j = 1, . . . , k. Let Mj be the complex orbifold projective space constructed from the characteristic model 

(△n
j , ξj) for j = 1, . . . , k. So by Lemma 4.4, the boundary of (2n +1)-dimensional oriented orbifold W (QP , λ)

is X ⊔ M1 ⊔ · · · ⊔ Mk. Hence by Theorem 5.5 we get the orbifold complex cobordism relation [X] =

[M1] + · · · + [Mk] in OBU
2n(pt). ✷

Example 5.7. Let X be a 2-dimensional quasitoric orbifold over P . Then P is a closed interval say [0, 1] and 

the corresponding di-characteristic function on P is given by ξ({0}) = p1, ξ({1}) = p2 (possibly up to sign) 

for some nonzero integers p1 and p2. So the Fig. 2 gives an isotropy function λ on {QP \P ×1, △1
1, △1

2}. Then 

W (QP , λ) is a 3-dimensional stably complex orbifold with boundary X ⊔M1 ⊔M2 where Mi is the quasitoric 

orbifold corresponding to the facet △1
i for i = 1, 2. By Example 3.4 and Proposition 3.6, Mi is equivariantly 

homeomorphic to the teardrop WP(1, pi) for i = 1, 2. Therefore X is complex orbifold cobordant to two 

copies of teardrop. ✷

Observation 5.8. Let

A = {[M ]: M is a 2n-dimensional complex orbifold projective space}.

We show that A is not a linearly independent set in OBU
2n(pt). Let Q be an (n + 1)-dimensional simple 

polytope in Rn+1 with vertices {v1, . . . , vk} and facets {F1, . . . , Fm}. We delete a neighborhood of each 

vertex vi by cutting with a hyperplane Hi in Rn+1 for i = 1, . . . , k such that Hi ∩ Hj ∩ Q is empty for i �= j, 

1 ≤ i, j ≤ k. Let QV be the remaining subset of Q and

△n
i = Q ∩ Hi = QV ∩ Hi for i = 1, . . . , k.
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Since Q is an (n + 1)-dimensional simple polytope, △n
i is an n-simplex for i = 1, . . . , k. Let F i = Fi ∩ QV

for i = 1, . . . , m. So {QV \△n
1 , . . . , △n

k} is an (n + 1)-dimensional simple polytope with exceptional facets 

and

F(QV ) = {F 1, . . . , F m} ∪ {△n
1 , . . . , △n

k}.

Since Zn is not a union of finitely many proper submodules over Z, we can define an isotropy function

λ: {F 1, . . . , F m} → Zn

on {QV \△n
1 , . . . , △n

k}. Since Q is an (n +1)-dimension simple polytope, each vertex vi of Q is the intersection 

of unique collection of facets {Fi1
, . . . , Fin+1

} for i = 1, . . . , k. So F(△n
i ) = {Fij

∩ △n
i : j = 1, . . . , n + 1}. We 

define a map ξi: F(△n
i ) → Zn by

ξi(Fij
∩ △n

i ) = λ(F ij
) for j = 1, . . . , n + 1. (5.8)

Then ξi is a di-characteristic function on △n
i . Let X(△n

i , ξi) be the complex orbifold projective space for the 

characteristic model (△n
i , ξi) for i = 1, . . . , k. So by Lemma 4.4 the space W (QV , λ) is an oriented orbifold 

with boundary where the boundary ∂W (QV , λ) is a disjoint union of {X(△n
i , ξi): i = 1, . . . , k}. Thus by 

Theorem 5.5, we have [X(△n
i , ξ1)] + · · · + [X(△n

i , ξk)] = 0 in OBU
2n(pt). Hence the set of vectors in A is 

not linearly independent. This also follows from Theorem 5.6 if X is a complex orbifold projective space. In 

that case k is n + 1. But if Q is any (n + 1)-dimensional simple polytope, k can be as large as possible. So 

we get more relations among complex orbifold projective spaces. Now we may ask the following question.

Question 5.9. Are there any other types of relation among complex orbifold projective spaces, and if so how 

do they arise?

Now we give some computations in the complex cobordism ring ΩU . Milnor and Novikov independently 

showed that the ring ΩU is isomorphic to the polynomial ring Z[a1, a2, . . .] where degai = 2i, see [14]. The 

complex projective spaces CPn for n ≥ 0 and Milnor hypersurfaces can be chosen as the standard set of 

multiplicative generators for ΩU , see example 5.39 in [3]. In [4], Buchstaber and Ray introduced a new set 

of multiplicative generators for ΩU which are quasitoric manifolds. In [5], they proved that any complex 

cobordism class contains a quasitoric manifold in dimension > 2 by showing that a disjoint union of products 

of this new generators is complex cobordant to a quasitoric manifold. See example 5.28 in [3] for the case 

of dimension 2.

Example 5.10. Let △n be the n-simplex with F(△n) = {F0, . . . , Fn} and

ξ: F(△n) → Zn

be the characteristic function such that the set {ξ0, . . . , ξ̂i, . . . , ξn} is a basis of Zn where ̂ represents the 

omission of the corresponding entry. Let ξi = ξ(Fi) for i = 0, . . . , n. Suppose ξi = (ai1, . . . , ain) for i =

0, . . . , n. Let X(△n, ξ) be the quasitoric manifold constructed from the characteristic model (△n, ξ). Then 

X(△n, ξ) is δ-equivariantly homeomorphic to CPn for some automorphism δ of Tn, see Proposition 5.63 

in [3]. The map δ induces an automorphism δ∗ of Zn. We may assume that δ∗((ξi)
t) = et

i where ei is the 

i-th standard vector of Zn and et
i is the transpose of ei for i = 1, . . . , n. By condition on the characteristic 

function ξ one can show that the set {δ∗((ξ0)t), . . . , ̂δ∗((ξi)
t), . . . , δ∗((ξn)t)} is a basis of Zn for i = 0, . . . , n. 

Hence δ∗((ξ0)t) = (a1, . . . , an)t where ai = ±1.
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By Theorem 5.18 in [3] the cohomology ring of X(△n, ξ) with integer coefficients is Z[x0, . . . , xn]/I + J

where I = 〈x0 . . . xn〉 and

J = 〈{a1ix1 + · · · + anixn + a0ix0 : i = 1, . . . , n}〉

and xi is the Poincare dual of the characteristic submanifold corresponding to the facet Fi for i = 1, . . . , n. 

So in the cohomology ring of X(△n, ξ), we get a system of homogeneous equation Ax = bx0 where i-th 

column of A is (ξi)
t, x = (x1, . . . , xn)t and b = −(ξ0)t. Then

x = δ∗Ax = δ∗
bx0 = −(a1, . . . , an)tx0.

Suppose aj = 1 for j ∈ {i1, . . . , il} ⊆ {1, . . . , n} and aj = −1 for j /∈ {i1, . . . , il}. So in the cohomology 

ring of X(△n, ξ), xn+1
0 = 0, xij

= −x0 for ij ∈ {i1, . . . , il} and xj = x0 for j /∈ {i1, . . . , il}. Assume the 

omniorientation of X(△n, ξ) is the characteristic omniorientation. Then by Theorem 5.34 in [3], the total 

Chern class of the corresponding stable complex bundle on X(△n, ξ) is given by

Cξ = (1 + x0) · · · (1 + xn) = (1 − x0)l(1 + x0)n+1−l.

Using the binomial theorem and Cauchy product formula one can compute the coefficient of xi
0 in this 

expression. Let cξ,i be the coefficient of xi
0 and K = (k1, . . . , ks) be a partition of n. Then K-th Chern 

number of X(△n, ξ) is Cξ,K = cξ,k1
· · · cξ,ks

. ✷

Now we discuss some computations in the complex cobordism ring ΩU . Let M be a 2n-dimensional 

omnioriented quasitoric manifold over a simple polytope P . Let ξ: F(P ) → Zn be the corresponding char-

acteristic function on P . We introduce some combinatorial data in the following. Let {Q\P, △n
1 , . . . , △n

k}

be an (n + 1)-dimensional simple polytope with exceptional facets, where △n
1 , . . . , △n

k are n-dimensional 

simplices. Let

F(Q) = {F1, . . . , Fm} ∪ {P, △n
1 , . . . , △n

k}

and

λ: {F1, . . . , Fm} → Zn

be an isotropy function on {Q\P, △n
1 , . . . , △n

k} such that the following holds:

(1) λ(Fi) = ξ(Fi ∩ P ) if Fi ∩ P is nonempty.

(2) If e is an edge of Q not contained in ∪k
i=1 △n

i ∪P then {λ(Fi1
), . . . , λ(Fin

)} is a basis of Zn where 

e = Fi1
∩ · · · ∩ Fin

.

Note that Fi ∩ P is nonempty if and only if Fi ∩ P is a facet of P . So the restriction of λ on the facets of P

is the map ξ. Thus we may assume λ is an extension of ξ.

Let ξi: F(△n
i ) → Zn be the map defined by

ξi(F ) = λ(Fj) if F = Fj ∩ △n
i .

So ξi is a characteristic function on △n
i for i = 1, . . . , k. Let X(△n

i , ξi) be the quasitoric manifold constructed 

from the characteristic model (△n
i , ξi) for i = 1, . . . , k. Recall that X(△n

i , ξi) is δ-equivariantly diffeomorphic 

to CPn for some δ ∈ Aut(Tn). Then by Corollary 4.5, the space W (Q, λ) is a manifold with quasitoric 

boundary where the boundary is M ⊔ X(△n
1 , ξ1) ⊔ . . . ⊔ X(△n

k , ξk). Therefore by Theorem 5.6 we get
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Fig. 3. A characteristic and isotropy function on a 2- and 3-polytope.

[M ] = k[CPn]

in ΩU , where the stable complex structure on each CPn is determined by the corresponding characteristic 

function.

Let K be a partition of n and Ci,K be the K-th Chern number of X(△n
i , ξi) for i = 1, . . . , k. Since two 

stably complex manifolds are cobordant if and only if their Chern numbers are identical (by Milnor [11]

and Novikov [13]), we get the following formula for the K-th Chern number CK of M ,

CK(M) = C1,K + · · · + Ck,K .

Recall that every quasitoric manifold has a stable complex structure which depends on the omniorientation 

on it. Not all quasitoric manifold admit an almost complex structure. For example, CP2#CP2 is a quasitoric 

manifold, but not an almost complex manifold.

Theorem 5.11. In the above discussion, if M is an almost complex quasitoric manifold then the complex 

cobordism class of ⊔k
i=1X(△n

i , ξi) contains the almost complex quasitoric manifold.

Remark 5.12. In the Theorem 5.11, if M is a smooth projective space then we get a representation of [M ]

in term of some generators of complex cobordism ring ΩU . Therefore the above combinatorial process gives 

some sufficient conditions for the Hirzebruch problem which is mentioned in the introduction.

Example 5.13. The quasitoric manifold corresponding to the characteristic function on P in Fig. 3 is the 

Hirzebruch surface M4
2 , see Example 1.19 in [7]. The function on {Q\Q1, . . . , Q5} is an isotropy function 

which extends the characteristic function on P ∼= Q5. Observe that the restriction of the isotropy function 

on the facets of △2
i is a characteristic function ξi: F(△2

i ) → Z2 for i = 1, . . . , 4. For each i ∈ {1, . . . , 4}, the 

corresponding quasitoric manifold X(△2
i , ξi) is δ-equivariantly homeomorphic to CP2. Then [M2

2 ] = 4[CP2]

where the stable complex structure on CP2 is determined by the corresponding characteristic function. 

Hence the complex cobordism class of 4[CP2] contains a connected algebraic variety. ✷
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