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This paper is a revised and expanded version of a paper entitled ‘Comparative
study of algorithms to handle geometric and material nonlinearities’ presented
at the 3rd Indian conference on Applied Mechanics, Motilal Nehru National
Institute of Technology Allahabad, India, 5–7 July.

1 Introduction

It is important to correctly handle nonlinear (geometric and material) governing
equations while solving the problems from solid mechanics. The material nonlinearity
occurs due to the nonlinear relation between stress (σ) and strain (ϵ), and geometric
nonlinearity occurs due to nonlinear relation between strain and displacements (Crisfield,
1997; Wang et al., 2014). Several algorithms are proposed in the open literature,
that deal with a specific type of nonlinearity, but they fail at either snap-through or
snap-back behaviour (Clarke and Hancock, 1990). As actual behaviour of material
is unknown, it is thus important to handle both types of nonlinearities. Not many
papers, as per the open literature, have presented comparative studies with algorithms
presented in a ready-to-use manner, except return mapping algorithms (Taqieddin and
Voyiadjis, 2009; Huang and Griffiths, 2009). The present work is motivated precisely
to fill this gap in the open literature. The generalised displacement control method
(GDCM) and displacement control method (DCM) are two of the most used methods
in nonlinear finite element (FE) method (Yang et al., 2007; Yaw, 2009), which are used
in the present work. It is also necessary to explicitly impose displacement constraint
(nonhomogeneous) while solving nonlinear problems. There are several methods already
proposed in the open literature that deal with displacement increment algorithms,
but most of them are either too difficult to implement, or they implicitly impose
displacement increment considering external pseudo force vector (Batoz and Dhatt,
1979; Yang et al., 2007). The proposed direct displacement control method (DDCM) is
developed in the present work to explicitly impose the displacement increment without
recourse to any pseudo force vector.

Batoz and Dhatt (1979) proposed incremental displacement algorithm for nonlinear
problems involving primarily mixed boundary conditions. They suggested to compute
two solutions corresponding to residual vector as well as load increment. The load
ratio λ is then computed based on known displacement constraint value at a specific
node (Batoz and Dhatt, 1979). The displacement increment in their algorithm is also
not explicitly imposed. The proposed DDCM algorithm is different from the algorithm
presented by Batoz and Dhatt (1979). Firstly, the prescribed displacement is explicitly
imposed in the DDCM algorithm, which is not the case in Batoz and Dhatt (1979).
Secondly, the mixed boundary condition is differently imposed in DDCM algorithm, as
explained in Subsection 4.1, as compared with Batoz and Dhatt (1979).
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The objective of the present work is to perform numerical tests by GDCM and
DCM approaches solving several 1D and 2D problems containing different types of
nonlinearities. The applicability of these approaches is tested for homogeneous (HD) as
well as inhomogeneous deformations (ID) cases. In order to enable explicit imposition
of prescribed displacement boundary conditions (DBC), DDCM approach coupled with
Newton-Raphson (NR) algorithm is finally proposed and compared against GDCM
and DCM approaches, especially while solving ID cases. The primary contributions of
the present work thus include the development of DDCM approach, as explained in
Subsection 4.1, its applicability while solving several 1D and 2D nonlinear problems,
as well as its comparison against GDCM and DCM approaches. Thus, the primary
motivation of the present work is to enable an explicit imposition of DBCs while
modelling linear/nonlinear problems from solid mechanics without recourse to any
pseudo force vector.

The paper is organised as follows. In Section 2, GDCM approach is described with
its algorithm and implementation details. The GDCM approach is then implemented to
solve 2D truss and 1D bar axial deformation problems. In Section 3, DCM approach
is described with its algorithm and implementation details. The DCM approach is also
implemented to solve several nonlinear problems. In Section 4, DDCM approach is
described by its algorithm and implementation details. The applicability of DDCM
approach is then successfully demonstrated solving several nonlinear problems using
HD and ID cases. The appropriate conclusions are then finally drawn in Section 5.

2 Generalised displacement control method

The GDCM is described and implemented in this section while solving 2D co-rotational
truss (Yaw, 2009) and 1D bar axial deformation problems (Burnett, 1987). The details
of the 2D co-rotational truss formulations can be referred in Yaw (2009).

In general, an external load {F ext} = P is applied on a structure in an incremental
manner and the corresponding incremental displacement is computed such that internal
incremental force exactly balances external incremental force (equilibrium). If an
external load increment dP is kept constant, a parameter λ called load ratio can be
defined that gives dP = λ P . An equilibrium of system is then given as

R(u) = F ext − F int(u) = λ P − F int(u) = dP − F int(u) = 0 (1)

where R(u) and u are residual and nodal displacement vectors, respectively. The load
increment is thus controlled by the value of λ, and the vector {R} is not equal to
zero due to nonlinear governing equations. Thus, the predicted values of {u} have to
be iteratively corrected such that {R} approaches zero. A pre-defined load increment
∆ λ thus results in converged displacement increment ∆ u, such that (λ+∆ λ, u+
∆ u) becomes a new solution point resulting in {R(u)} = 0. Equation (1) has to be
continuously satisfied at each load ratio increment till a desired value of external force
is reached. Both (∆ λ,∆ u) are treated as variables in the GDCM approach (Clarke and
Hancock, 1990; Yang et al., 2007) while satisfying equation (1) (unlike in NR method,
where ∆ λ is fixed). The GDCM algorithm is implemented to solve 2D co-rotational
truss problem as follows.
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2.1 GDCM algorithm

Initialise the arrays as
{

u1
0

}

n×1
= {0} ,

{

(F int)10
}

n×1
= {0} ,

{

R1
0

}

n×1
= {0}n×1 ,

{

N1
0

}

N×1
= {0}} (2)

where n and N are total number of nodes and bars, respectively, in a given truss
configuration, and {N} is an array of axial forces (internal) within all bars. The
superscript and subscript in equation (2) represent outer increment and inner iteration
count, respectively, where an outer increment implies a new equilibrium point on a
load-displacement plot, where as inner iteration implies correction iteration within a
specific outer increment. Let λ1

1 be a pre-defined load increment parameter for the first
incremental step and let {P̂} be a pre-defined external reference force. Compute the
initial values of inclination angles (sin and cos) and lengths of all bars within a given
truss configuration (Yaw, 2009) and initialise the following algorithm with i = 1 and
j = 1.

1 Build global stiffness matrix [K{ui
j−1}]global, impose constrained boundary

conditions where ever a specific degree of freedom (DOF) is fixed to get
[K{ui

j−1}]n×n = [K]ij−1.

2 Compute incremental displacement {∆ ûi
j} caused by reference load as

[K]ij−1 {∆ûi
j} = {P̂}. The direction of incremental displacement is important here

rather than its magnitude. Compute incremental displacement {∆ui
j} caused by

residual unbalanced force as [K]ij−1 {∆ui
j} = {Ri

j−1}.

3 Load factor λi
j is computed from constraint condition. For i > 1 and j = 1, factor

λi
1 is computed as

λi
1 = λ1

1 |GSP|
1

2 , where GSP =

{

∆û1
1

}T {

∆û1
1

}

{

∆ûi−1
1

}T {

∆ûi
1

}

}

(3)

where GSP is generalised stiffness parameter accounting for variation in structural
stiffness while computing load increments. GSP = 1 for i = 1. λi

1 has same sign
as λi−1

1 initially, if the computed value of GSP is -ve, multiply λi
1 by –1 to

reverse the loading direction. When i ≥ 1 and j ≥ 2, the λi
j is computed as

λi
j = −

{

∆ûi−1
1

}T {

∆ui
j

}

{

∆ûi−1
1

}T {

∆ûi
j

}

(4)

where
{

∆ûi−1
1

}

is an incremental displacement generated due to reference load
{P̂} during first inner iteration of (i – 1)th incremental step, and

{

∆ûi
j

}

and
{

∆ui
j

}

are incremental displacements generated by reference load and residual
unbalanced forces, respectively, during jth inner iteration of ith outer incremental
step. Note here that

{

∆û0
1

}

=
{

∆û1
1

}

is considered while applying equation (4)
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for i = 1 and j ≥ 2. It is also noted that
{

∆ui
1

}

= {0} will always be true as an
equilibrium is already achieved in a previous incremental step such that

{

Ri
0

}

should always be equal to zero. Update displacement vectors as
{

∆ui
j

}

= λi
j

{

∆ûi
j

}

+
{

∆ui
j

}

,
{

ui
j

}

=
{

ui
j−1

}

+
{

∆ui
j

}

(5)

4 Compute current nodal coordinates, length and inclination of bars, and current
{N} and {(F int)ij} (Yaw, 2009). Extract the internal force values at the nodes
where external load is being applied. Compute an external load and unbalanced
force as
{

(F ext)ij
}

=
{

(F ext)ij−1

}

+ λi
j

{

P̂
}

,
{

Ri
j

}

=
{

(F ext)ij
}

−
{

(F int)ij
}

(6)

Figure 1 (a) One bar truss (b) Three bar truss configurations
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5 Compute ratio of second norm of residual and external force (supposedly applied),
compare it with a predefined tolerance value as
ratio = (∥ {Ri

j} ∥2)/(∥ {(F ext)ij} ∥2) and test if ratio ≤ tolerance

a If ratio > tolerance, go to step 1 with j = j + 1.

b If ratio < tolerance, store all values (to be used for next j = 1 iteration as
an initialisation) with i = i + 1 as

[Ki
0] = [Ki−1

conv],
{

Ri
0

}

=
{

Ri−1
conv

}

,
{

(F int)i0
}

=
{

(F int)i−1
conv

}

{ui
0} = {ui−1

conv}, {(F
ext)i0} = {(F ext)i−1

conv}

}

(7)

where conv is an inner iteration count j when convergence is reached.
Update all truss variables, as in step 4, and go to step 1 with this new
initialisation data.



Comparative study of algorithms to handle geometric 37

Table 1 Input data for truss shown in, (a) Figure 1(a) (b) Figure 1(b) solved by GDCM

Variable Input value Variable Input value

Iterations 30 Iterations 50
P̂4 (N) –2 P̂7, P̂8 (N) 3.45 × 103, –6.9 × 103

λ
1

1 0.75 λ
1

1 0.75
Tolerance 1 × 10–15 Tolerance 5 × 10–14

(a) (b)

2.2 Implementation and results of GDCM algorithm

The GDCM algorithm, as explained in Subsection 2.1, is implemented to solve a
truss problem as shown in Figure 1(a) with input data as given in Table 1(b). The
load-displacement plot is shown in Figures 2(a) and 2(b), and it can be seen that an
analytical solution is captured by GDCM approach.

Figure 2 2D co-rotational truss solution by GDCM approach, (a) snap through (b) snap back
behaviour, 2D truss configuration as shown in Figure 1(b) solved by GDCM with
inputs as (c) (Px)4 = 4 × 103, (Py)4 = –8 × 103, and λ

1

1 = 0.75
(d) (Px)4 = 6 × 103, (Py)4 = –12 × 103, and λ

1

1 = 0.75
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The GDCM approach is also applied to solve a truss configuration as shown in
Figure 1(b) with input data as given in Table 1(a). In this problem, Px and Py are
continuously applied at node 4. The internal force vs displacement results at node 4
(where Px and Py are applied), with two different sets of input values, are as shown
in Figures 2(c) and 2(d). It can be seen in Figure 2(c) that, till v4 = 0.03 m value is
reached, u4 value increases, and then start decreasing, which imply that the bars were
physically expanding in length till v4 = 0.03 m. Once v4 = 0.05 m is reached, u4 = 0 m
is reached.

Table 2 Input data for 1D bar problem solved by GDCM using E = ET , (a) homogeneous
deformation (b) ID

Variable Input value Variable Input value

Iterations 75 Iterations 75
(F ext)4 (N) 4.09471 (F ext)4 (N) 4.09471
λ
1

1 0.0489 λ
1

1 0.0489
Inner iterations 2,000 Inner iterations 2,000
Tolerance 1 × 10–14 Tolerance 7 × 10–15

(a) (b)

GDCM approach is used to solve material nonlinearity. Consider 1D bar with response
as

σ =











10 ϵ ϵ ≤ ϵi

10
[

ϵ− (ϵ− ϵi)
2
]

ϵi ≤ ϵ < ϵm

0 ϵ ≥ ϵm

(8)

It can be seen that material behave in linear elastic manner till strain ϵi is reached. It
behaves in a nonlinear manner from ϵi to ϵm, and stress becomes zero when ϵ > ϵm. The
tangent and secant modulii, ET = (∂σ/∂ϵ) and Ks = (σ/ϵ), respectively, are defined
as

ET =











10 ϵ ≤ ϵi

10 [1− 2 (ϵ− ϵi)] ϵi ≤ ϵ < ϵm

0 ϵ ≥ ϵm

,

Ks =















10 ϵ ≤ ϵi

10

[

1− ϵ
(

1−
ϵi

ϵ

)2
]

ϵi ≤ ϵ < ϵm

0 ϵ ≥ ϵm

(9)

One should be able to use either ET or Ks while defining Young’s modulus E in FE
stiffness matrix computation (Crisfield, 1997). In the HD, constitutive response of each
FE is same as defined in equation (9). A weak portion of bar is assumed to be already
known (second element) in ID case, where damage is occuring, and only this weak
element follows equation (9), and other elements always follow equation (9)1, till ϵm is
reached. Once ϵ within element increases beyond elastic limit, E value in the stiffness
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matrix can be approximated by either ET or Ks. An internal force within bar can then
be appropriately computed as

F int =















10A ϵ ϵ ≤ ϵi

A 10
[

ϵ− (ϵ− ϵi)
2
]

ϵi ≤ ϵ < ϵm

0 ϵ ≥ ϵm

(for E = ET ),

F int = AKs ϵ (for E = Ks) (10)

The GDCM approach is applied to solve 1D bar problem by 3 C0-linear FEs with
one Gauss point per element located at the centre of the element (Burnett, 1987). All
the stresses are computed at this Gauss point of the element. The E = ET is initially
considered, thus ET and internal force are computed by equations (9)1 and (10)1,
respectively. A pseudo force is applied at 4th node towards the right end of domain, and
first node towards left end of the domain is fixed. Initially, HD of bar is considered
and input variables are specified as given in Table 2(a). The values of ϵi = 1.26 and
ϵm = 1.46 are obtained by plotting equation (8)2. The σ − ϵ plot within 3rd element is
shown in Figure 3(a).

Table 3 Input data for truss shown in, (a) Figure 1(a) (b) Figure 1(b), solved by DCM

Variable Input value Variable Input value

(vmax)4 (m) –0.025 (vmax)8 (m) –0.05
ninc 30 Iterations 50
F4 (N) 2 P̂7, P̂8 (N) 3.45 × 103, –6.9 × 103

Tolerance 7 × 10–9 Tolerance 1 × 10–10

(a) (b)

The GDCM approach is then applied to solve 1D bar deformation with ID achieved
by E = ET . The second element is considered weaker than remaining elements, thus
it shows nonlinear behaviour beyond ϵi = 0.26 where as the remaining elements obey
linearly elastic Hooke’s law till the end of simulation. The input variables are used as
given in Table 2(b), and σ − ϵ plot is shown in Figure 3(b). The values of σ within
second and third elements are compared, and found equal such that an equilibrium is
achieved at the inter-element nodes. An equilibrium at inter-element node 2 is given as
10 ϵ1 = 10 [ϵ2 − (ϵ2 − ϵi)

2], where ϵ1 and ϵ2 are the strains within linear elastic element
1 and nonlinear element 2. The strains ϵ1 and ϵ2 thus adjust themselves (ϵ1 < ϵ2) such
that the force equilibrium is achieved. The load-displacement values at the last node are
archieved and plotted as shown in Figure 3(c), and it can be seen that the displacement
at last node decreases while achieving an equilibrium. This behaviour is expected, as
all the nodes are free to displace such that all internal forces become zero. The force
balance is thus achieved by increasing strain within damaged element and decreasing
strains within remaining elements, as seen in Figure 3(d). Similar results can also be
obtained by E = Ks and considering HD and ID cases.
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Figure 3 σ vs. ϵ plot in 1D bar under uniaxial tension solved by GDCM considering
E = ET , (a) HD (b) ID cases, 1D bar under uniaxial tension (c) F int

− u at last
node with ID case and E = ET (d) strain variation in damaged element (2nd) and
last element obtained by ID case and E = Ks

0 0.5 1 1.5
0

1

2

3

4

5

6

 

 

X: 0.7483
Y: 5.099

ǫ

σ

(a)

0 0.5 1 1.5
0

1

2

3

4

5

6

ǫ

σ

 

 

σ − ǫ in element 2

inhomogeneous deformation
by tangent modulus

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

u displacement at node 4

F
in
t
at

n
o
d
e
4

 

 

F − u plot at last node

by inhomogeneous deformation

using tangent modulus

(c)

0 2000 4000 6000 8000 10000 12000 14000 16000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

outer increment count

ǫ

 

 

ǫ within second element

ǫ within third element

(d)

3 Displacement control method

The DCM approach is studied in this section. It is necessary to impose DBC for certain
type of problems, but it is not possible in GDCM approach, DCM approach is thus
developed to overcome this difficulty.

An incremental displacement ∆ u is implicitly imposed in DCM using an external
pseudo force vector (Yaw, 2009). A correct value of external force is then computed,
by obtaining load ratio ∆ λ, such that correct ∆ u is imposed. Thus, an external force
is computed (that is supposed to be applied) that results in required ∆ u.

3.1 DCM algorithm

The following algorithm is illustrated for 2D co-rotational truss, but appropriate changes
can be made to apply it for any other nonlinear problem. Initialise the arrays as

{u0} = {0}, {(F int)10} = {0}, {R1
0} = {0}, {N1

0 } = {0}, λ0 = 0 (11)
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Figure 4 (a) Load vs. displacement in Y -direction at node 2 for 2D truss configuration, as
shown in Figure 1(a), solved by DCM (b) Load vs. displacement in X− and
Y -directions at node 4 in 2D truss configuration, as shown in Figure 1(b), solved by
DCM
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Let {F} be a pre-defined pseudo force vector. Initialise the procedure for i = 1 and
j = 1. Let umax and ninc be the total displacement to be imposed at a specific DOF
q, and total outer incremental loops, respectively, such that ∆uq = umax/ninc be an
incremental displacement to be imposed at a time.

1 Compute current values of bar angles, bar lengths, and bar internal axial force
{N}, and initialise i = 1 and j = 1 only at the beginning (Yaw, 2009). Build
global stiffness matrix [K{ui

j−1}]global, impose constrained conditions (zero DOF)
to get [K{ui

j−1}] = [K]ij−1.

2 Compute displacement caused by external pseudo force [K]ij−1 {û}
i
j = {F}. The

direction, rather than magnitude, of displacement is important. Let (ûq)
i
j be the

qth-DOF value obtained from displacement vector {û}ij . An incremental load ratio
is computed as dλi

j = ∆uq/(ûq)
i
j and the predicted value of total load ratio is

then λi
j = λi−1 + dλi

j . An incremental load ratio ensures correct imposition of
incremental displacement. An incremental actual external force is obtained
{

dF i
j

}

= dλi
j {F}. An incremental displacement is obtained as

{dui
j} = ([K]ij−1)

−1 {dF i
j}. It can be checked at this step that qth-DOF is

correctly imposed as ∆uq . Total predicted displacement is then
{ui

j} = {ui−1}+ {dui
j}. Update all truss variables as explained in step 1 (Yaw,

2009).

3 Compute residual {Ri
j} = λi

j {F} − {(F int)ij} and ratioerr = (||{Ri
j}||2 /

||{(F ext)ij}||2), check if ratioerr ≤ tolerance, where tolerance is a pre-defined
value. If ratioerr > tolerance, then continue with j = 2 as follows:

a Rebuild stiffness matrix [K]ij−1 by latest values of truss variables and impose
constraint conditions.
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b Compute displacement caused by residual {ŭi
j} = ([K]ij−1)

−1 {Ri
j−1}, and

compute total displacement caused by pseudo external force
{ûi

j} = ([K]ij−1)
−1 {F}.

c Correction to load ratio is computed by extracting qth-DOF values as
∇λi

j = (ŭq
i
j
)/(ûq

i
j
). The correction is δλi

j = δλi
j−1 −∇λi

j . use δλi
1 = 0.

Correction to predicted displacement is {∇ui
j} = [K]ij−1 [{R

i
j−1} –

∇λi
j {F}], and correction is {δui

j} = {δui
j−1}+ {∇ui

j}. Use {δui
1} = 0.

d Update load ratio λi
j = λi

1 + δλi
j and displacement {ui

j} = {ui
1}+ {δui

j}.
Update all truss variables as explained in step 1 (Yaw, 2009).

e Compute residual error {Ri
j} = λi

j {F} − {(F int)ij}, where
{(F ext)ij} = λi

j {F}. Compute the ratio of second norm
ratioerr = (||{Ri

j}||2 / ||{(F
ext)ij}||2). If ratioerr > tolerance, go to step a

with j = j + 1.

4 If ratioerr ≤ tolerance, update all the variables as

λi = λi
1 + δλi

conv, {ui} = {ui
1}+ {δui

conv}, {(F int)i} = {(F int)iconv},

{(F ext)i} = λi {F} (12)

where conv is an inner iteration number when (ratioerr ≤ tolerance) criteria
was satisfied. Go to step 1 with i = i + 1 and j = 1, such that next incremental
displacement is imposed.

Table 4 Input data for 1D bar problem solved by DCM using E = ET , (a) HD (b) ID cases

Variable Input value Variable Input value

ninc 20 ninc 100
(F ext)4 (N) 0.1 (F ext)4 (N) 10
(vmax)4 8.86 (vmax)4 3.82
Inner iterations 2,000 Inner iterations 2,000
Tolerance 1 × 10–14 Tolerance 1 × 10–14

(a) (b)

3.2 Implementation and results of DCM algorithm

The DCM algorithm is then implemented to solve a 1-bar truss problem, as shown in
Figure 1(a), with input variables as given in Table 3(a). The v displacement at node 2 is
plotted against corresponding internal force in Figure 4(a). The DCM algorithm is also
implemented to solve a 3 bar truss problem, as shown in Figure 1(b), with the input
variables as given in Table 3(b), and the u and v displacements at node 4 are plotted
in Figure 4(b). It can be seen that the results obtained by DCM approach, as shown
in Figure 4, are similar to the corresponding results obtained by GDCM approach as
shown in Figure 2.
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The 1D bar uniaxial deformation problem is modelled by DCM approach, as
explained in Subsection 2.2, considering E = ET with input variables as given in
Table 4(a). It can be noted that, it is very difficult to achieve force equilibrium once
ϵ2 = 1.0 is reached within damaged element as shown in Figure 5(c). The strain within
damaged element (2nd) then sharply increases resulting in (F int)2 = 0 but the strains in
remaining elements do not quickly approach zero value resulting in force inequilibrium.
It can thus be seen from Figures 5(d) and 5(b) that when stress within damaged element
becomes zero, the stress within undamaged element (last) is still nonzero. It is thus
noted that the DCM approach may not be suitable for ID situations.

Figure 5 1D bar under uniaxial tension solved by DCM using E = ET , (a) σ − ϵ plot for
HD (b) σ − ϵ plot for ID case (within damaged element) (c) ϵ variation in damaged
and undamaged elements (d) σ within undamaged element (last) for ID case
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4 Direct displacement control method

It is seen in GDCM approach, as explained in Section 2, that the load ratio ∆ λ and
displacement increment ∆ u are simultaneously varied (using pseudo force vector) such
that force equilibrium is achieved. It is also seen in DCM approach, as explained in
Section 3, that the displacement increment ∆ u is implicitly imposed again using pseudo
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force vector. Both the approaches are thus unsuitable in situations, when an explicit
displacement increment has to be imposed without recourse to pseudo force vector, eg.,
while numerically modelling displacement controlled uniaxial tension test. A DDCM is
thus proposed and developed in this section, in which the prescribed DBC at a specifc
node is explicitly imposed in an incremental manner without the use of any pseudo force
vector, and global force equilibrium is achieved by NR approach. There is no pseudo
force vector used in DDCM approach, thus it does not have any similarities with the
existing methods (Yang et al., 2007; Huang and Griffiths, 2009; Yaw, 2009).

4.1 DDCM algorithm

The proposed algorithm is explained for uniaxial deformation of 1D bar, but it can
be generalised for any other problem. Let {u} be an array of axial displacements at
all the nodes. There is no external force being applied ({(F ext)}N×1 = 0), instead
an incremental displacement is applied at a specific boundary node. An initial data is
defined as

{

u0
}

N×1
= 0,

{

(F int)10
}

= 0,
{

(ϵ)0
}

= 0 (13)

Let Dmax be a maximum displacement to be imposed at a specific boundary node
q within iter number of iterations, such that (δu)q = (Dmax/iter) is an incremental
displacement to be imposed in each outer iteration at a node q. Let n and N be the
total number of elements and nodes, respectively, present in a mesh.

1 Compute current values of ET and Ks based on total strain ϵ, and initialise i = 1
and j = 1. The program terminates when i = iter increment is reached.

2 Build current tangent stiffness matrix [K′

{ui
j−1}]N×N based on E = ET or Ks.

Impose constrained boundary condition at the left most node and displacement
increment (δu)q at right most node (last node) to get reduced stiffness matrix
[K{ui

j−1}](N−2)×(N−2) and nonzero reduced force vector as {(F ext
red )}(N−2)×1

(Crisfield, 1997).

3 Compute incremental displacement {δui
j} and predicted displacement vector {ui

j}
as

{δui
j}(N−2)×1 = [K{ui

j−1}]
−1 {(F ext

red )}, {u
i
j} = {ui−1}+ {δui

j} (14)

where δui
j(1, 1) = 0 and δui

j(N, 1) = (δu)q is appended to get the complete
displacement vector, and {ui−1} is a converged displacement vector at (i – 1)
iteration.

4 Compute total {ϵ} within an element (e) as

{ϵ(e)}ij = [−
1

L

1

L
](e) [{u1 u2}

T ](e) (15)

where L, (u1)
i
j and (u2)

i
j are the length, first and second node displacement,

respectively, for a given element (e) [C0−linear FE is assumed here (Burnett,
1987)].
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5 Update values of ET and Ks based on {ϵ}ij by equation (9). Compute current
values of stress {σ}ij within all elements by equation (8) if E = ET is considered,
else σ = Ks ϵ is used for E = Ks. Compute current nodal internal force
{(F int)ij} by equation (10).

6 Set {Ri
j}(N−2)×1 = −{(F int)ij} excluding the first and last nodal force values

from vector {(F int)ij} (reactions). This is done to ensure that the internal force
values at inter-element nodes slowly converge to zero in inner iteration loops (no
external force at inter-element nodes).

7 Compute the second norm of residual force vector ||{Ri
j}||2 and compare it with

a pre-defined tolerance tol. If ||{Ri
j}||2 ≥ tol then set j = j + 1 and proceed as

a Rebuild current [K′

{ui
j−1}] by latest values of E = ET or Ks, and get

reduced stiffness matrix [K{ui
j−1}] as per step 2. Set {(F ext

red )} = {Ri
j−1}.

b Compute correction to the displacement vector and corrected displacement as

{dui
j} = [K{ui

j−1}]
−1 {Ri

j−1}, {∆ui
j} = {∆ui

j−1}+ {dui
j}

{ui
j} = {ui−1}+ {δui

1}+ {∆ui
j}







(16)

where always initialise {∆ui
1} = 0, and j ≥ 2. It can be noted that

equaton (16) only update inter-element nodal displacements.
dui

j(1, 1) = dui
j(N, 1) = 0 is appended, before computing {∆ui

j}, to get the
complete predicted displacement vector.

c Update vectors {ϵij}, {(ET )
i
j}, {(Ks)

i
j} based on current vector {ui

j}. Update
stress {σ}ij and nodal internal force {(F int)ij}.

d Set {Ri
j} = −{(F int)ij} excluding the boundary nodes and go to step 7.

8 If ||{Ri
j}||2 ≤ tol then update all the vectors as

{ui} = {ui
conv}, {ϵi} = {ϵiconv} (17)

where conv = j when ||{Ri
j}||2 ≤ tol was achieved. Update outer and inner loop

counters i = i + 1 and j = 1, respectively. Go to step 2 if i ≤ iter.

Table 5 Input data for 1D bar problem solved by DDCM using E = ET with (a) HD (b) ID

Variable Input value Variable Input value

iter 100 iter 150
Dmax 10 Dmax 5
Inner iterations 2,000 Inner iterations 2,000
Tolerance 8 × 10

–14
Tolerance 4 × 10–15

(a) (b)
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Figure 6 1D bar under uniaxial tension solved by DDCM for HD case and E = ET ,
(a) σ − ϵ plot in second and last elements (b) variation in ϵ in last and second
(interior) element

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

ǫ

σ

 

 
σ − ǫ in last element

σ − ǫ plot in second element

homogeneous deformation
by tangent modulus in
DDCM

(a)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

outer iteration count
ǫ

 

 

ǫ in second element

ǫ in last element

homogeneous deformation by
tangent modulus in DDCM

(b)

Figure 7 1D bar under uniaxial tension solved by ID and E = Ks, (a) σ − ϵ plot within
damaged element (b) variation of σ within undamaged and damaged elements
(c) variation of ϵ within damaged and undamaged elements (d) HD case solved by
return-mapping plasticity algorithms
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4.1.1 Imposition of mixed boundary condition in DDCM algorithm

The proposed DDCM algorithm is presented in Subsection 4.1 for prescribed
displacement increment at a specific node with no external pseudo force being applied
at any of the nodes. The DDCM algorithm can be also used in case of mixed
boundary conditions as follows. Let us consider a load increment {∆ λ F ext} within
a displacement increment (∆ u). Thus, when reduced system [K] {u} = {F ext} is
developed in step 2 of DDCM algorithm, the external force has two parts as {F ext} =
{F ext}DBC + {F ext}NBC . The part {F ext}DBC is contributed by the imposition of
DBC, and the part {F ext}NBC is contributed by the imposition of Neumann boundary
condition (prescribed load increment). The steps 3–5 of the DDCM algorithm, as
given above, are then executed as described. The residual vector in step 6 is given
as {R} = {F ext}NBC − {F int}free, where vector {F int}free is developed excluding
rows corresponding to DOF ids having prescribed DBC. This is done because, the
internal force values at the nodes having prescribed DBC are reaction forces, which
are correctly obtained once force equilibrium is achieved at free DOFs. Thus, the
displacement values at only free DOFs are corrected in inner iteration in step 7 of
DDCM algorithm. The prescribed displacement and force increments are thus imposed
at the end of converged outer iteration. The mixed boundary conditions are thus straight
forwardly handled in DDCM algorithm.

4.2 Implementation and results of DDCM algorithm

The DDCM algorithm is now implemented to solve a problem of 1D bar under uniaxial
tension with prescribed DBC. HD is considered initially (all elements follow nonlinear
σ − ϵ law once ϵi ≥ 0.26) with input variables as given in Table 5(a). The σ − ϵ plot
for last and second element is shown in Figure 6(a) and it is seen that the ϵ within last
element continues to increase even when σ = 0 where as ϵ within second element stops
increasing once σ = 0, as shown in Figure 6(b). This is correct behaviour, as beyond
ϵ ≥ 1.46, the last elements fully breaks and continue to have a prescribed displacement
at last node. It is also seen in the DDCM that, the displacement at last node continues
to increase even when F int = 0 is reached due to the explicit imposition of DBC till
Dmax is reached. It can also be seen by changing Dmax that, the solution is obtained
in a stable manner.

The 1D bar under uniaxial tension problem is also solved by ID case using DDCM
with input variables as given in Table 5(b). The damage is pre-defined in a second
element and remaining elements follow linearly elastic Hooke’s law till end of the
simulation. The σ − ϵ plot within damaged element is shown in Figure 7(a), and it
can be seen that the strain within damaged element increases sharply after ϵ > 1.0
resulting in difficulty in achieving an equilibrium, as also shown in Figure 7(c). The
stress variation within damaged and undamaged element is shown in Figure 7(b) and it
can be seen that an equilibrium is always achieved till σ = 0.

If we compare the results, given in Figures 5(b) and 5(d) (computed by DCM
approach), with the results given in Figure 7(b), it can be seen that the stresses within
damaged and undamaged elements are always equal in DDCM approach, thus implying
that the force equilibrium is always ensured in DDCM approach. This is the advantage
of DDCM approach as compared with GDCM and DCM approaches.
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Several 1D plasticity problems are finally implemented by coupling the DDCM
algorithm, as explained in Subsection 4.1, with the return-mapping algorithm of
computational plasticity (Neto et al., 2008). The prescribed DBC is explicitly imposed in
all these problems. The corresponding σ − ϵ plots are shown in Figure 7, and it can be
seen that the DDCM approach correctly achieves global equilibrium in a stable manner.

5 Conclusions

The GDCM and DCM approaches are initially discussed in the present work. The
GDCM approach simultanelusly vary (∆ λ, ∆ u) to achieve an equilibrium using an
external pseudo force. The DCM approach implicitly imposes (∆ u) to achieve an
equilibrium using an external pseudo force. There are several problems that warrant an
explicit imposition of prescribed DBC without recourse to any pseudo force, which may
not be possible by GDCM and DCM approaches. To overcome this difficulty, a novel
DDCM approach is then proposed in Section 4 that explicitly imposes prescribed DBC
values.

It is difficult to achieve an equilibrium for 1D ID case by GDCM and DCM
approaches, whereas it is relatively easier in DDCM approach as long as the
displacement increment ∆ u is small (to avoid larger inner iterations). It is also observed
by the authors that DDCM approach gives stable results independent of the number of
elements present in a mesh as well as the type of nonlinearity present in a formulation.
It is thus concluded based on extensive numerical experiments that DDCM approach
is a promising method that can be used while explicitly imposing prescribed DBC.
The authors would like to test the applicability of DDCM approach to solve more
complicated higher dimension problems in the near future.
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Appendix

Main file of DDCM algorithm implementation to solve 1D bar axial deformation
(see online version for colours)
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AE-#A.B#;+,+ C4+ILM*9+AE-#A.B#;#6!", V4+A$"'!#0#H*9+A.B#;+,+>9+'.'#ILM#I:Y+,+A.B#;9+

0#/".'+,+<$1.=2C45'$1!'5.&=ZC89+/#/".'+,+<$1.=2C45'$1!'5.&=ZC89+

='1!5&#/".'+,+<$1.=2C45'$1!'5.&=ZC89+='1$==#/".'+,+<$1.=2C45'$1!'5.&=ZC89+

='1!5&#>#/".'+,+<$1.=2C45'$1!'5.&=ZC89+='1$==#>#/".'+,+<$1.=2C45'$1!'5.&=ZC89+

'!&($&'#%.A"=#>#6!15!'5.&+,+<$1.=2C45'$1!'5.&=89+=$-!&'#%.A"=#>#6!15!'5.&+,+<$1.=2C45'$1!'5.&=89+

='1!5&#6!1&#>#$"$%$&'+,+<$1.=2C45'$1!'5.&=89+

1$"!;#B!-'.1+,+C9+$/=5".&#5+,+VW>[9+$/=5".&#%+,+CW\[9++

A$"'!#$/=5".&+,+$/=5".&#%+]+$/=5".&#59+/"!='#='1&#-.0&'$1+,+C9+/"!='#='1&#='!1'+,V9+
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?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?+

?+^'!1'+.B+J'$1!'5.&=+

?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?+

B.1+5,CD5'$1!'5.&=++

++5B+25+,,+CVV8+

++++++='./#)$1$+,+C9+

++$&A+

++'.'!"#A5=/+,+5_A$"'!#0#H9+

++'.'!"#='1&+,+'.'!"#A5=/+G+'.'!"#"$&(')9+

++?@@@@@@-.%/0'$+-011$&'+'!&($&'+!&A+=$-!&'+%.A0"55@@@@@@+

++ -011$&'#'!&($&'#%.A0"0=4+-011$&'#=$-!&'#%.A0"0=*+,+++++++ -.%/#-011#%.A0"552'.'!"#='1!5&4+&4+

5=#).%.($&$.0=4+$/=5".&#54+$/=5".&#%4++ A$"'!#$/=5".&4+5=#F`KK89+

'!&($&'#%.A"=#>#6!15!'5.&2C458+,+-011$&'#'!&($&'#%.A0"0=2C4>89+++++++++='1!5&#6!1&#>#$"$%$&'2C458+

 !"#"$%&'"($)*+,-./0!

!!'12$*"&3#4%'&.&5$()$")#*+,-)/! !26((1*"&'12$*"&3#46%6'+,-./0!

!!78888888694$"1!:! !:&;!#(!:! !<&'888888888888888888!

!!=26((1*"&"$*>1*"&3#46%6',?! !694$"1&:&'")@&3$"(A+)'&'12$*"-!! ! ! !

! 26((1*"&"$*>1*"&3#46%6'-!26((1*"&'12$*"&3#46%6'/0!

!!78888888888882#396"1!9(14)2"14!4)'9%$2131*"!)*2(131*"8888888888!

!!=<&>%#B$%-!C&>%#B$%?! !>1*&>%#B$%&'")@&3$"(A&@#(21&512"(+*-!D-!1%3*&2#**12")5)"E-!!!F(1$-!

26((1*"&"$*>1*"&3#46%6',-!$%%&1%13*"%&%1*>"G/0!

!!=H&(146214-!@&(146214?! !I39#'1&JKL&M$AN1%%+D-!"#"&JOC&JKL-!4B2&4#@&A-!<&>%#B$%-!! C&>%#B$%-!

4B2&4#@&A&5$%/0!

!!=41%"$&6&"#"$%?! !A)&26((1*"&M$AN1%%&15$%+D-!"#"&JOC&JKL-!4B2&4#@&A-!!!!! !

! 4B2&4#@&A&5$%-!H&(146214-!@&(146214-!,/0!

!!6&"#"$%&26(! !6&"#"$%&9(15!P!41%"$&6&"#"$%0!741%"$&6&"#"$%Q!9(14)2"14!! ! ! !

! ! ! ! ! ! ! 4)'9%$2131*"!!

!!788888882#396"1!"#"$%!'"($)*888888888!

!!="#"$%&'"($)*-!"#"$%&'"($)*&*#41'?! !2#39&26((1*"&'"($)*+*-!D-!1%3*&2#**12")5)"E-!!! !

! ! ! ! 6&"#"$%&26(-!K&3$"(A/0!

!!788888882#396"1!26((1*"!"$*>1*"!$*4!'12$*"!3#46%))8888888888888!!!!

!!=26((1*"&"$*>1*"&3#46%6'-!26((1*"&'12$*"&3#46%6'?! !! 2#39&26((&3#46%))+"#"$%&'"($)*-!*-!

)'&G#3#>1*1#6'-!19')%#*&)-!19')%#*&3-!! 41%"$&19')%#*-!)'&R:SS/0!

!!7888888888694$"1!:! !:&;!#(!:! !<&'!"#!B1!6'14!)*!"$*>1*"!'")@@*1''!3$"()A888!

!!=26((1*"&"$*>1*"&3#46%6',?! !694$"1&:&'")@&3$"(A+)'&'12$*"-!! 26((1*"&"$*>1*"&3#46%6'-!

26((1*"&'12$*"&3#46%6'/0!!!

!!7888888882#396"1!"#"$%!'"(1''!N)"G)*!1$2G!1%131*"8888888888888!!!!!

!!="#"$%&'"(1''?! !2#39&26((1*"&'"(1''+"#"$%&'"($)*-!*-!26((1*"&"$*>1*"&3#46%6',-!! )'&'12$*"-!

)'&G#3#>1*1#6'-!19')%#*&)-!19')%#*&3-!41%"$&19')%#*-!)'&R:SS/0!

!!788888882#396"1!)*"1(*$%!@#(21'!$"!$%%!"G1!*#41'88888888888!!!!

!!="#"$%&)*"1(*$%&@#(21?! !2#39&)*"1(*$%&@#(21+K&3$"(A-!*-!D-!"#"$%&'"(1''-!! $%%&1%13*"%&%1*>"G-!

F(1$-!1%3*&2#**12")5)"E/07)*"1(*$%!@#(21!T!$%%!*#41'!

!!788888815$%6$"1!(1')46$%!@#(21!512"#(888888888888888888!!!

!!(1')46$%&26(! !!8!"#"$%&)*"1(*$%&@#(210!7"#!B1!6'14!@#(!*1A"!)**1(!)"1($")#*!U .!

!!(1')46$%&26(+,-,/! !V0!(1')46$%&26(+JOC-,/! !VWV0!

!!($")#! !*#(3+(1')46$%&26(-./X$B'+3$A+(1')46$%&26(//0!)**1(&)"1(&2#6*"! !V0!

78888888888888888888888888888888888888888888888888888888888888888888888888888888888!

!!*#"&2#*51(>14! !V0!J1%"$&6&"#"$%! !Y1(#'+JOC8.-,/0!6&"#"$%&)**1(&26(&9(14! !!!!!!!!

6&"#"$%&26(+.QJOC8,-,/0!"#"$%&J1%"$&6! !Y1(#'+JOC-,/0!'3$%%1'"&1((#(! !($")#0!

!!78888888)**1(!)"1($")#*'!!"#!$2G)151!@#(21!1Z6)%)B()63!$"!)*"1(*$%!*#41'88888!!!!

!!NG)%1!+$B'+($")#/![!"#%1($*21/!7!%##9!@#(!U![ !.!

!!!!!!!)@!+($")#!\!"#%1($*21/!

!!!!!!!!!!!!4)'9+](1Z6)(14!*#(3!(1$2G14]/0!

!!!!!!!!!!!!B(1$H0!

!!!!!!!1*4!

!!!!!!!)@!+)**1(&)"1(&2#6*"![!)**1(&)"1(*/!

!!!!!!!!!!!!4)'9+])**1(!)"1($")#*!2#6*"!1A211414]/0!

!!!!!!!!!!!!*#"&2#*51(>14! !,0!'3$%%1'"&1((#(!

!!!!!!!!!!!!)!

!!!!!!!!!!!B(1$H0!

!!!!!!!1*4!

!!78888888888888882#396"1!2#((12"14!4)'9%$2131*"!512"#(888888888888!
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!!78888888888888882#396"1!2#((12"14!4)'9%$2131*"!512"#(888888888888!

!!!!!!!=<&>%#B$%-!C&>%#B$%?! !>1*&>%#B$%&'")@&3$"(A&@#(21&512"(+*-!D-!!!

! 1%3*&2#**12")5)"E-!F(1$-!26((1*"&"$*>1*"&3#46%6',-!! $%%&1%13*"%&%1*>"G/0!

!!!!!!!=H&(146214-!@&(146214?! !I39#'1&JKL&M$AN1%%+D-!"#"&JOC&JKL-!4B2&4#@&A-!! !

 !"#$%&'$( )"#$%&'$( *&+"*%,"-".'$/0 

       ,"12*3+2* 4 1256*3'$"+31789:;)<=(=/0 

       >:2$?'"3"?%?'$@ 4 -6"+3112A?"B'-C2$$"2.'$7D( ?%?":;)":EF( *&+"*%,"-(    

 *&+"*%,"-".'$( G"12*3+2*(,"12*3+2*( =/0 

       ?%?'$":2$?'"3 4 ?%?'$":2$?'"3 H :2$?'"3"?%?'$0 :2$?'"3"?%?'$ 4 I21%57:;)(=/0 

       ?%?'$":2$?'"37=(=/ 4 J0 ?%?'$":2$?'"37:;)(=/ 4 JKJ0 

       3"?%?'$"+31 4 3"?%?'$"L12. H *2$?'"3"?%?'$ H ?%?'$":2$?'"3 M 12$'-",'+?%10       

  N<<<<<+%OL3?2 ?%?'$ 5?1'6A<<<<<<<<<<<<<<<<<<<<<<<        

       >?%?'$"5?1'6A( ?%?'$"5?1'6A"A%*25@ 4 +%OL"+3112A?"5?1'6A7A( D(     

 2$OA"+%AA2+?6.6?P( 3"?%?'$"+31( E"O'?1-/0 

  N<<<<<<<+%OL3?2 +3112A? ?'A#2A? 'A* 52+'A? O%*3$66<<<<<<<<<<<           

       >+3112A?"?'A#2A?"O%*3$35( +3112A?"52+'A?"O%*3$35@ 4       

 +%OL"+311"O%*3$667?%?'$"5?1'6A( A( 65"Q%O%#2A2%35( 2L56$%A"6(    

 2L56$%A"O( *2$?'"2L56$%A( 65"RSTT/0 

        

  N<<<<<<3L*'?2 S 4 S"U %1 S 4 !"5 ?% &2 352* 6A ?'A#2A? 5?6,,A255 O'?16-<<< 

       >+3112A?"?'A#2A?"O%*3$35=@ 4 3L*'?2"S"5?6,"O'?1-765"52+'A?(     

 +3112A?"?'A#2A?"O%*3$35( +3112A?"52+'A?"O%*3$35/0 

  N<<<<<<<+%OL3?2 ?%?'$ 5?1255 C6?Q6A 2'+Q 2$2O2A?<<<<<<<   

       >?%?'$"5?1255@ 4 +%OL"+3112A?"5?12557?%?'$"5?1'6A( A(      

 +3112A?"?'A#2A?"O%*3$35=( 65"52+'A?( 65"Q%O%#2A2%35( 2L56$%A"6(    

 2L56$%A"O( *2$?'"2L56$%A( 65"RSTT/0 

  N<<<<<<<+%OL3?2 6A?21A'$ ,%1+25 '? '$$ ?Q2 A%*25<<<<<<<    

       >?%?'$"6A?21A'$",%1+2@ 4 +%OL"6A?21A'$",%1+27E"O'?1-( A( D( ?%?'$"5?1255(   

 '$$"2$2OA?$"$2A#?Q( V12'( 2$OA"+%AA2+?6.6?P/0N6A?K ,%1+2 W '$$ A%*25 

  N<<<<<<<2.'$3'?2 1256*3'$ ,%1+2 .2+?%1<<<<<<<        

       1256*3'$"+31 4 < ?%?'$"6A?21A'$",%1+20 N?% &2 352* ,%1 A2-? 6AA21 6?21'?6%A    

      X Y4 Z 

       1256*3'$"+317=(=/ 4 J0 1256*3'$"+317:;)(=/ 4 J0 

       1'?6% 4 A%1O71256*3'$"+31(8/0  

       6, 7$27'&571'?6%/( '&575O'$$25?"211%1// 44 =/ 

           5O'$$25?"211%1 4 1'?6%0 

       2A* 

       6AA21"6?21"+%3A? 4 6AA21"6?21"+%3A? H =0 

  2A*NCQ6$2 

  N<<<<<<<[L*'?6A# \'$325<<<<<<< 

  6, 7A%?"+%A.21#2* 44 =/ 

       A%?"+%A.21#2* 4 J0 '11"$2A#?Q 4 60 

       &12'G0 

  2A* 

  3"?%?'$"L12. 4 3"?%?'$"+310 )"6A?"+31 4 ?%?'$"6A?21A'$",%1+2=0 

  N<<<<<<<<T$%?5<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<N  

  '11"$2A#?Q 4 6H=0 

  3"L$%?7=(6H=/ 4 3"?%?'$"+317:;)(=/0 L"L$%?7=(6H=/ 4 )"6A?"+317:;)(=/0 

  5?1'6A"L$%?7=(6H=/ 4 ?%?'$"5?1'6A7=(A/0 5?1255"L$%?7=(6H=/ 4 ?%?'$"5?12557=(A/0 

  5?1'6A"8"L$%?7=(6H=/ 4 ?%?'$"5?1'6A7=(8/0 5?1255"8"L$%?7=(6H=/ 4  ?%?'$"5?12557=(8/0 

  N<<<<<<<5?%12 L$'5?6+ 5?1'6A<<<<<<< 

  6, 765"RSTT 44 =/ 

    6, 7#27?%?'$"5?1'6A7=(8/( 2L56$%A"6/ 44=/ 

         L$'5?"5?1A"5?'1? 4 60 

         2L56$%A"L7=(6H=/ 4 ?%?'$"5?1'6A7=(8/ < 2L56$%A"60 

     2$52 
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         !"#$%&'(")*+$,*- . /0/1 

     !'2 

  !'2 

!'2 34&5 $.*6$7!587$&'# 

$4 )855(%!'97: .. /- 

    855(%!'97: . $1 

!'2 

  

3;;;;;;;;;;;;<%&77$'9 =!#>%7#;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3 

"%&7)#758$'("%&7)*6855(%!'97:-+ #75!##("%&7)*6855(%!'97:-+ ?@;?+ ?A$'!B$27:?+*-1 :&%2 &'1 

"%&7)#758$'(C("%&7)*6855(%!'97:-+ #75!##(C("%&7)*6855(%!'97:-+ ?,;?+ ?A$'!B$27:?+*-1 :&%2 &441 

 


