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Bures Distance For Completely Positive Maps

B.V. Rajarama Bhat and K. Sumesh

Abstract

D. Bures had defined a metric on the set of normal states on a von Neumann algebra using

GNS representations of states. This notion has been extended to completely positive maps

between C
∗-algebras by D. Kretschmann, D. Schlingemann and R. F. Werner. We present

a Hilbert C
∗-module version of this theory. We show that we do get a metric when the

completely positive maps under consideration map to a von Neumann algebra. Further, we

include several examples and counter examples. We also prove a rigidity theorem, showing

that representation modules of completely positive maps which are close to the identity map

contain a copy of the original algebra.
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1 Preliminaries

1.1 Introduction

Given a state φ on a C∗-algebra B we have the familiar GNS-triple (H, π, x), where
H is a Hilbert space, π : B → B(H) is a representation (i.e., ∗-homomorphism) and
x ∈ H is a vector such that φ(·) = 〈x, π(·)x〉. Now it is a natural question to ask:
If two states φ1, φ2 are close in some metric, whether the associated triples are close
in some sense? Keeping this idea in mind, D. Bures ([7]) defines a distance between
two states φ1, φ2 on B, as

β(φ1, φ2) := inf ‖x1 − x2‖ ,

where the infimum is taken over all GNS-triples with common representation spaces:
(H, π, x1), (H, π, x2) of φ1, φ2. D. Bures showed that β is indeed a metric. The notion
has found uses in many areas ([1, 3, 4, 8]).

D. Kretschmann, D. Schlingemann and R. F. Werner ([13]) extended this notion
at first to completely positive (CP) maps from a C∗-algebra A to B(G) for some
Hilbert space G and then to more general range C∗-algebras using an alternative
definition of the Bures distance. They use the Stinespring representation ([23]) for
the initial definition, which in the usual formulation requires the range space to be
the whole algebra B(G). Here we develop the theory using Hilbert module language,
which allows the range algebra to be any C∗-algebra, and the definition of the metric
is a very natural extension of the definition given by Bures for states. Working with
modules has several advantages. The results we get are of course same as that of
[13], when the range algebra is a von Neumann algebra or an injective C∗-algebra.
However, we show that one may not even get a metric (triangle inequality may fail)
when the range algebra is a general C∗-algebra.

There have been several papers ([2, 9]) on different methods to make exact com-
putations of the Bures metric for states. We provide several examples with explicit
computations of the Bures distance for CP-maps. In particular, we show that the
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infimum in the definition of Bures metric may not be attained in all common rep-
resentation modules, answering a question raised in [12, 13]. It turns out that the
example is quite simple involving CP-maps on 2× 2 matrix algebra.

In the last Section we prove a rigidity theorem, which says that on von Neumann
algebras, if a CP-map is strictly within unit distance (in Bures metric) from the
identity map, then the GNS-module of the CP-map contains a copy of the original
von Neumann algebra as a direct summand. We consider this as the most impor-
tant positive result of this paper and we expect that the result will have further
applications in the study of CP-maps.

1.2 Hilbert C∗-modules

Let B be a C∗-algebra. A complex vector space E is a Hilbert B-module if it is
a right B-module with a B-valued inner product, which is complete with respect
to the associated norm (see [14, 17, 21] for basic theory). We denote the space of
all bounded and adjointable maps between two Hilbert B-modules E1 and E2 by
B

a(E1, E2). In particular, if E1 = E2 = E, then B
a(E,E) = B

a(E), which forms a
C∗-algebra with natural algebraic operations.

Let π : B → B(G) be a non-degenerate (i.e., span π(B)G = G) representation
of B on a Hilbert space G. Given a Hilbert B-module E, we define the Hilbert
space H := E ⊙G as the completion of the inner product space obtained from the
algebraic tensor product E ⊗ G by dividing out the null space of the semi-inner
product 〈x ⊗ g, x′ ⊗ g′〉 := 〈g, π(〈x, x′〉)g′〉, where x, x′ ∈ E, g, g′ ∈ G. We denote
the equivalence class containing x ⊗ g by x ⊙ g. To each x ∈ E we associate the
linear map Lx : g 7→ x ⊙ g in B(G,H) with adjoint L∗

x : y ⊙ g 7→ π(〈x, y〉)g.
Clearly L∗

xLy = π(〈x, y〉) and Lxb = Lxπ(b) for all x, y ∈ E, b ∈ B. Also ‖Lx‖2 =

‖π(〈x, x〉)‖ = ‖x‖2. By identifying B with π(B) and x with Lx we may assume that
E ⊆ B(G,H). Note that a 7→ a⊙idG : Ba(E) → B(H) is a unital ∗-homomorphism,
and hence an isometry. So we may consider Ba(E) ⊆ B(H).

Suppose A is another C∗-algebra. A Hilbert B-module E is called a Hilbert A-
B-module if there exists a representation τ : A → B

a(E) which is non-degenerate
(equivalently, unital if A is unital). If E is a Hilbert A-B-module, we may consider
A ⊆ Ba(E), and we denote τ(a) by a itself and thereby τ(a)x = ax for all x ∈ E, a ∈
A. The composition map A τ−→ Ba(E) → B(H) is denoted by ρ; i.e., ρ(a) = a⊙ idG.
Note that Lax = ρ(a)Lx. Also B(G,H) forms a Hilbert A-B(G)-module with left
action ax := ρ(a)x. If E1 and E2 are two Hilbert A-B-modules, then a linear map
Φ : E1 → E2 is said to be A-B-linear (or bilinear) if Φ(axb) = aΦ(x)b for all
a ∈ A, b ∈ B, x ∈ E. The space of all bounded, adjointable and bilinear maps from
E1 to E2 is denoted by Ba,bil(E1, E2). If E is a Hilbert A-B-module, then Ba,bil(E)
is the relative commutant of the image of A in Ba(E).

Suppose B ⊆ B(G) is a von Neumann algebra and E is a Hilbert B-module.
Then we say E is a von Neumann B-module if E is strongly closed in B(G,H) ⊆
B(G⊕H). Thus, if x is an element in the strong closure E

s
of a Hilbert B-module

E, then there exists a net (xα) ⊆ E such that Lxα

SOT−−→ x. All von Neumann
B-modules are self-dual (in the sense that all B-valued functionals are given by a
B-valued inner product), and hence they are complemented in all Hilbert B-module
which contains it as a B-submodule. In particular, strongly closed B-submodules
are complemented in a von Neumann B-module. If we think Ba(E) ⊆ B(H), then
Ba(E) is a von Neumann algebra acting non-degenerately on the Hilbert space H .
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If A is a C∗-algebra, then by a von Neumann A-B-module we mean a von Neumann
B-module E with a non-degenerate representation τ : A → Ba(E). In addition, if
A is a von Neumann algebra and a 7→ 〈x, ax〉 : A → B is a normal mapping for all
x ∈ E (equivalently, the representation ρ : A → B(H) is normal), then we call E a
two-sided von Neumann A-B-module. For more details see [17, 21, 22].

It is well-known that if ϕ : A → B is a CP-map between unital C∗-algebras, then
there exists a Hilbert A-B-module E and x ∈ E such that ϕ(a) = 〈x, ax〉 for all
a ∈ A. The construction of E is by starting with A ⊗ B and defining a B-valued
semi-inner product on it as 〈a1 ⊗ b1, a2 ⊗ b2〉 := b∗1ϕ(a

∗
1a2)b2, and usual quotienting

and completion procedure (see [11, 16, 17, 18, 23]). The comparison with GNS
for states is obvious. The pair (E, x) is called a GNS-construction for ϕ and E is
called a GNS-module for ϕ. If further, span AxB = E, then (E, x) is said to be a
minimal GNS-construction, and is unique up to isomorphism. If (both A and) B
is a von Neumann algebra, then (E, x) can be chosen such that E is a (two-sided)
von Neumann A-B-module. Here the closure for minimality is taken under strong
operator topology.

Note that if B = B(G), then L∗
xρ(a)Lx = 〈x, ax〉 = ϕ(a) for all a ∈ A. Thus

(ρ, Lx, H) is a Stinespring representation for the CP-map ϕ : A → B(G).

1.3 Bures distance

Given two unital C∗-algebrasA and B, we let CP (A,B) denote the set of all nonzero
CP-maps from A into B.
1.3.1 Definition. A Hilbert A-B-module E is said to be a common representation
module for ϕ1, ϕ2 ∈ CP (A,B) if both of them can be represented in E, that is, there
exist xi ∈ E such that ϕi(a) = 〈xi, axi〉, i = 1, 2.

Note that we are demanding no minimality for the common representation mod-
ule. So we can always have such a module. For, if (Êi, x̂i) is the minimal GNS-

construction for ϕi, then take E = Ê1 ⊕ Ê2, x1 = x̂1 ⊕ 0 and x2 = 0 ⊕ x̂2. For a
common representation module E, define S(E,ϕi) to be the set of all x ∈ E such
that ϕi(a) = 〈x, ax〉 for all a ∈ A.

1.3.2 Definition. Let E be a common representation module for ϕ1, ϕ2 ∈ CP (A,B).
Define

βE(ϕ1, ϕ2) := inf
{
‖x1 − x2‖ : xi ∈ S(E,ϕi), i = 1, 2

}

and the Bures distance
β(ϕ1, ϕ2) := inf

E
βE(ϕ1, ϕ2)

where the infimum is taken over all common representation module E.

We have called β as a ‘distance’ in anticipation. Later we will show that it is
indeed a metric under most situations, for instance, when B is a von Neumann
algebra. But surprisingly β is not a metric in general.

Our first job is to show that the definition here matches with that of [13]. We see
it as follows. Suppose B = B(G). If E is a common representation module and xi ∈
S(E,ϕi), then (ρ, Lxi

, E⊙G) is a Stinespring representation for ϕi with ‖x1 − x2‖ =
‖Lx1

− Lx2
‖. On the other way if (π′, Vi, H

′) is a Stinespring representation for ϕi,
then E := B(G,H ′) is a Hilbert1 A-B(G)-module with inner product 〈x1, x2〉 :=

1If A is a von Neumann algebra and π is normal, then a 7→ 〈x, ay〉 = 〈x, π(a)y〉 is normal map from A → B for
all x, y ∈ E. Thus E can be made into a two-sided von Neumann A-B(G)-module.
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x∗1x2, composition as the right module action and left action given by ax := π′(a)x
for all a ∈ A, x ∈ E. Clearly (E, Vi) is a GNS-construction for ϕi. Note that
spanEG = H ′. We have H := E⊙G is a Hilbert space with inner product 〈x⊙g, x′⊙
g′〉 = 〈g′, x∗x′g′〉 = 〈xg, x′g′〉. Thus x⊙ g 7→ xg is a unitary from U : H → H ′. Note
that ULVi

= Vi and Uρ(a)U
∗ = π′(a) for all a ∈ A. Identifying H with H ′ through

U , we get π′ = ρ and LVi
= Vi. Therefore (π, Vi, H

′) = (ρ, LVi
, H). Thus there

exists a one-one correspondence between the GNS-constructions {(E, x1), (E, x2)}
and the Stinespring representations {(π′, V1, H

′), (π′, V2, H
′)} such that ‖x1 − x2‖ =

‖V1 − V2‖. Hence β(ϕ1, ϕ2) coincides with the definition given in [13]. In particular,
if B = B(C) = C, then β(ϕ1, ϕ2) is the Bures distance given in [7].

The following proposition says that β(ϕ1, ϕ2) coincide with the alternative defi-
nition, given in [13], of Bures distance for CP-maps between arbitrary C∗-algebras.
Subsequently will not be needing this definition and we present it here for the sake
of completeness.

1.3.3 Proposition. With notation as above,

β(ϕ1, ϕ2) = inf
ϕ

‖ϕ11(1) + ϕ22(1)− ϕ12(1)− ϕ21(1)‖
1

2

where the infimum is taken over all CP-extensions ϕ : A → M2(B) of the form

ϕ =

[
ϕ11 ϕ12

ϕ21 ϕ22

]
with completely bounded maps ϕij : A → B satisfying ϕii = ϕi.

Proof. Let E be a common representation module and xi ∈ S(E,ϕi). Define ϕ :
A →M2(B) by a 7→ [ϕij(a)], where ϕij(a) := 〈xi, axj〉. Then ϕ is a CP-map with

‖x1 − x2‖2 = ‖〈x1, x1〉+ 〈x2, x2〉 − 〈x1, x2〉 − 〈x2, x1〉‖
= ‖ϕ11(1) + ϕ22(1)− ϕ12(1)− ϕ21(1)‖ .

Since E is arbitrary β(ϕ1, ϕ2) ≥ inf
ϕ

‖ϕ11(1) + ϕ22(1)− ϕ12(1)− ϕ21(1)‖
1

2 . To get

the reverse inequality, assume that ϕ = [ϕij] : A → M2(B) is a CP-map with

ϕii = ϕi. Let (Ê, x̂) be a GNS-construction of ϕ. Note that Ê is a Hilbert A-M2(B)-
module. Given b ∈ B, x ∈ Ê define xb := x(bI), where I ∈ M2(B) is the identity

matrix. Under this action Ê becomes a right B-module. Now for x1, x2 ∈ Ê define
〈x1, x2〉′ :=

∑
i,j

〈x1, x2〉ij, where 〈x1, x2〉ij is the (i, j)th entry of 〈x1, x2〉 ∈ M2(B).

Then 〈·, ·〉′ is a B-valued inner product on Ê. Denote the resulting inner product

B-module by E0. The left action of A on Ê induce a non-degenerate left action of
A on E0. Complete E0 to get the Hilbert A-B-module E. Set xi = x̂eii, where
{eij}, 1 ≤ i, j ≤ 2 are matrix units of M2(B). Then xi ∈ S(E,ϕi) and

‖x1 − x2‖2 = ‖〈x1 − x2, x1 − x2〉′‖
= ‖〈x1, x1〉′ + 〈x2, x2〉′ − 〈x1, x2〉′ − 〈x2, x1〉′‖
= ‖ϕ11(1) + ϕ22(1)− ϕ12(1)− ϕ21(1)‖ .

Since ϕ is arbitrary β(ϕ1, ϕ2) ≤ inf
ϕ

‖ϕ11(1) + ϕ22(1)− ϕ12(1)− ϕ21(1)‖
1

2 .

The following proposition says that Bures distance is stable under taking ampli-
ations.
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1.3.4 Proposition. Let A and B be unital C∗-algebras. Then for ϕ, ψ ∈ CP (A,B),

β(ϕ, ψ) = β(ϕn, ψn)

where ϕn, ψn :Mn(A) →Mn(B) are the amplifications of ϕ, ψ respectively for n ≥ 1.

Proof. Fix n ≥ 1. Suppose E is a common representation module for ϕ, ψ and x1 ∈
S(E,ϕ), x2 ∈ S(E, ψ). Then diag(x1, · · · , x1) ∈ S(Mn(E), ϕn) and diag(x2, · · · , x2) ∈
S(Mn(E), ψn), and hence

β(ϕn, ψn) ≤ ‖diag(x1 − x2, · · · , x1 − x2)‖ = ‖x1 − x2‖ .

Since x1, x2 and E are arbitrary β(ϕn, ψn) ≤ β(ϕ, ψ). Conversely, suppose F is
a common representation module for ϕn, ψn and y1 ∈ S(F, ϕn), y2 ∈ S(F, ψn). If
{eij}, {fij}, 1 ≤ i, j ≤ n are matrix units of Mn(A),Mn(B) respectively, then E :=
{e11Ff11} is a common representation module for ϕ, ψ in the natural way and more
over, e11y1f11 ∈ S(E,ϕ) and e11y2f11 ∈ S(E, ψ). Also,

‖e11y1f11 − e11y2f11‖2 = ‖f11〈e11(y1 − y2), e11(y1 − y2)〉f11‖ ≤ ‖y1 − y2‖2 .

Therefore β(ϕ, ψ) ≤ β(ϕn, ψn).

1.3.5 Proposition. Let A,B and C be unital C∗-algebras. Then for ϕi ∈ CP (A,B)
and ψi ∈ CP (B, C), i = 1, 2,

β(ψ1 ◦ ϕ1, ψ2 ◦ ϕ2) ≤ ‖ϕ1‖
1

2 β(ψ1, ψ2) + ‖ψ2‖
1

2 β(ϕ1, ϕ2).

In particular,

β(ψ2 ◦ ϕ1, ψ2 ◦ ϕ2) ≤ ‖ψ2‖
1

2 β(ϕ1, ϕ2).

Proof. Suppose E, F are common representation modules for ϕi, ψi respectively, and
xi ∈ S(E,ϕi), yi ∈ S(F, ψi), i = 1, 2. Then xi ⊙ yi ∈ S(E ⊙ F, ψi ◦ ϕi), and hence

β(ψ1 ◦ ϕ1, ψ2 ◦ ϕ2) ≤ ‖x1 ⊙ y1 − x2 ⊙ y2‖
≤ ‖x1 ⊙ y1 − x1 ⊙ y2 + x1 ⊙ y2 − x2 ⊙ y2‖
≤ ‖x1‖ ‖y1 − y2‖+ ‖x1 − x2‖ ‖y2‖
≤ ‖ϕ1‖

1

2 ‖y1 − y2‖+ ‖x1 − x2‖ ‖ψ2‖
1

2 .

Since xi, yi, E and F are arbitrary the results holds.

1.3.6 Proposition. Let ϕ1, ϕ2 ∈ CP (A,B). Then

(i) β(ϕ1, ϕ1 + ϕ2) ≤ ‖ϕ2‖
1

2 .

(ii)
∣∣β(ϕ1, ϕ2)− β(ϕ1, ǫϕ1 + (1− ǫ)ϕ2)

∣∣ ≤ ǫ
1

2 (‖ϕ1‖
1

2 + ‖ϕ2‖
1

2 ) for 0 ≤ ǫ ≤ 1.

(iii) If ϕi(1) ≤ 1, then
∣∣‖ϕ1‖ − ‖ϕ2‖

∣∣ ≤ 2β(ϕ1, ϕ2).

Proof. (i) Suppose (Ei, xi) is a GNS-construction for ϕi, i = 1, 2. Then z1 :=
x1 ⊕ 0 ∈ S(E1 ⊕ E2, ϕ1) and z2 := x1 ⊕ x2 ∈ S(E1 ⊕E2, ϕ1 + ϕ2), and hence

β(ϕ1, ϕ1 + ϕ2) ≤ ‖z1 − z2‖ = ‖x2‖ = ‖ϕ2‖
1

2 .
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(ii) Using triangle inequality and part (i),
∣∣β(ϕ1, ϕ2)− β(ϕ1, ǫϕ1 + (1− ǫ)ϕ2)

∣∣
≤ β(ϕ2, ǫϕ1 + (1− ǫ)ϕ2)

≤ β(ϕ2, (1− ǫ)ϕ2) + β((1− ǫ)ϕ2, ǫϕ1 + (1− ǫ)ϕ2)

≤ ‖ǫϕ2‖
1

2 + ‖ǫϕ1‖
1

2

≤ ǫ
1

2 (‖ϕ1‖
1

2 + ‖ϕ2‖
1

2 ).

(iii) Let E be a common representation for ϕ1, ϕ2 and xi ∈ S(E,ϕi). Then
∣∣‖ϕ1‖ − ‖ϕ2‖

∣∣ =
∣∣‖x1‖2 − ‖x2‖2

∣∣
=

∣∣(‖x1‖+ ‖x2‖)(‖x1‖ − ‖x2‖)
∣∣

= (‖x1‖+ ‖x2‖)
∣∣‖x1‖ − ‖x2‖

∣∣
≤ 2 ‖x1 − x2‖ .

Since x1, x2 and E are arbitrary the result follows.

2 Bures distance: von Neumann algebras

As is well-known one of the problems in dealing with Hilbert C∗-modules in contrast
to Hilbert spaces is that in general submodules are not complemented, that is, there
is a problem in taking orthogonal complements and writing the whole space as a
direct sum. This problem is not there for von Neumann modules. Here we generalize
almost all the results of [13], where the results stated mainly for the case when the
range algebra is the algebra of all bounded operators on a Hilbert space. The proofs
are similar, though we have also taken some ideas from [7]. We also give several
examples and answer a question of [13] in the negative.

In this Section we assume that A is a unital C∗-algebra, B ⊆ B(G) is a von
Neumann algebra and ϕ1, ϕ2 ∈ CP (A,B).

2.1 Metric property

To begin with we have the following proposition.

2.1.1 Proposition. If B ⊆ B(G) is a von Neumann algebra, then

β(ϕ1, ϕ2) = inf
E

βE(ϕ1, ϕ2) (2.1)

where the infimum is taken over all common representation modules E which are
von Neumann A-B-module.

Proof. Since von Neumann B-modules are Hilbert B-modules we have β(ϕ1, ϕ2) ≤
inf βE(ϕ1, ϕ2). To get the reverse inequality, assume that E is a common repre-
sentation module for ϕ1, ϕ2. Then E := E

s ⊆ B(G,E ⊙G) forms a von Neumann
A-B-module. Since E ⊆ E we have E is a common representation module for ϕ1, ϕ2,
and hence inf βE(ϕ1, ϕ2) ≤ β(ϕ1, ϕ2).

As we have taken B as von Neumann algebra for this Section, we may use (2.1)
as the definition of Bures distance. Also by a common representation module and
GNS-module we will mean a von Neumann A-B-module. However, note that for all
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the results here, the algebra A can be a general C∗-algebra and the left action by A
need not be normal. So we do not need that ϕ1, ϕ2 to be normal.

The following result shows the existence of a sort of universal module where we
can take infimum to compute the Bures distance.

2.1.2 Proposition. There exists a von Neumann A-B-module E such that:

(i) For all ϕ1, ϕ2 ∈ CP (A,B), β(ϕ1, ϕ2) = βE(ϕ1, ϕ2);

(ii) For a fixed ϕ1 ∈ CP (A,B) there exists ξ1 ∈ S(E , ϕ1) such that β(ϕ1, ϕ2) =
inf

{
‖ξ1 − ξ2‖ : ξ2 ∈ S(E , ϕ2)

}
for all ϕ2 ∈ CP (A,B).

Proof. For each ϕ ∈ CP (A,B) fix a GNS-construction (Eϕ, xϕ). Set Hϕ = Eϕ ⊙ G
and H = ⊕Hϕ. Then E0 := ⊕ s

Eϕ ⊆ B(G,H) is a von Neumann A-B-module. Note
that S(E0, ϕ) is nonempty for all ϕ ∈ CP (A,B). Take E = E0 ⊕ E0 which is a von
Neumann A-B-module.

(i) Suppose ϕ1, ϕ2 ∈ CP (A,B) and E is a common representation module. We
will prove that βE(ϕ1, ϕ2) ≤ βE(ϕ1, ϕ2). For that, it is enough to show that for
all xi ∈ S(E,ϕi) there exists ξi ∈ S(E , ϕi) such that ‖ξ1 − ξ2‖ ≤ ‖x1 − x2‖. Take
ξ′1 ∈ S(E0, ϕ1). Let U : span s Aξ′1B → span s Ax1B be the bilinear unitary satisfying
U(aξ′1b) = ax1b. Let P be the bilinear projection of E onto span s Ax1B. Set

x′2 := Px2 ∈ span s Ax1B ⊆ E,

x′′2 := (1− P )x2 ∈ (span s Ax1B)⊥ ⊆ E,

ϕ′
2(·) := 〈x′2, (·)x′2〉 and

ϕ′′
2(·) := 〈x′′2, (·)x′′2〉.

Clearly ϕ2 = ϕ′
2 + ϕ′′

2. Let ξ
′
2 = U∗(x′2) ∈ span s Aξ′1B ⊆ E0. Then

〈ξ′2, aξ′2〉 = 〈U∗x′2, aU
∗x′2〉 = 〈U∗x′2, U

∗(ax′2)〉 = 〈x′2, ax′2〉 = ϕ′
2(a).

Let ξ′′2 ∈ S(E0, ϕ′′
2). Set ξ1 = ξ′1 ⊕ 0 and ξ2 = ξ′2 ⊕ ξ′′2 . Then ξi ∈ S(E , ϕi) with

‖ξ1 − ξ2‖2 = ‖〈ξ1, ξ1〉+ 〈ξ2, ξ2〉 − 2Re(〈ξ1, ξ2〉)‖
= ‖〈ξ′1, ξ′1〉+ 〈ξ′2, ξ′2〉+ 〈ξ′′2 , ξ′′2 〉 − 2Re(〈ξ′1, ξ′2〉)‖
= ‖〈ξ′1 − ξ′2, ξ

′
1 − ξ′2〉+ 〈ξ′′2 , ξ′′2〉‖

= ‖〈U(ξ′1 − ξ′2), U(ξ
′
1 − ξ′2)〉+ 〈ξ′′2 , ξ′′2〉‖

= ‖〈x1 − x′2, x1 − x′2〉+ 〈x′′2, x′′2〉‖
= ‖〈x1, x1〉+ 〈x′2, x′2〉 − 2Re(〈x1, x′2〉) + 〈x′′2, x′′2〉‖
= ‖〈x1, x1〉+ 〈x2, Px2〉 − 2Re(〈x1, x′2〉) + 〈x2, (1− P )x2〉‖
= ‖〈x1, x1〉+ 〈x2, x2〉 − 2Re(〈x1, x′2〉)‖
= ‖〈x1 − x2, x1 − x2〉‖ (x1 = x1 ⊕ 0, x2 = x′2 ⊕ x′′2 in E)

= ‖x1 − x2‖2 .

Since x1, x2 and E are arbitrary βE(ϕ1, ϕ2) ≤ β(ϕ1, ϕ2).

(ii) Note that ξ1 ∈ S(E , ϕ1) is independent of E and ϕ2. If we denote ξ2 obtained
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in part(i) by ξ2(x1, x2), then

βE(ϕ1, ϕ2) = inf
{
‖ξ − ξ′‖ : ξ ∈ S(E , ϕ1), ξ

′ ∈ S(E , ϕ2)
}

≤ inf
{
‖ξ1 − ξ′‖ : ξ′ ∈ S(E , ϕ2)

}

≤ inf
{
‖ξ1 − ξ2(x1, x2)‖ : xi ∈ S(E,ϕi)

}

= inf
{
‖x1 − x2‖ : xi ∈ S(E,ϕi)

}

= βE(ϕ1, ϕ2)

Since this is true for all common representation module E, we get

β(ϕ1, ϕ2) ≤ βE(ϕ1, ϕ2) ≤ inf
{
‖ξ1 − ξ′‖ : ξ′ ∈ S(E , ϕ2)

}
≤ β(ϕ1, ϕ2).

This completes the proof.

2.1.3 Theorem. β is a metric on CP (A,B).

Proof. Positive definiteness: Let ϕ1, ϕ2 ∈ CP (A,B). Take E and ξ1 ∈ S(E , ϕ1) as
in proposition 2.1.2(ii). By definition β(ϕ1, ϕ2) ≥ 0. Now if β(ϕ1, ϕ2) = 0, then

inf
{
‖ξ1 − ξ2‖ : ξ2 ∈ S(E , ϕ2)

}
= 0.

Since S(E , ϕ2) is a norm closed subset of E , above equality implies that ξ1 ∈ S(E , ϕ2).
Therefore ϕ1 = ϕ2.
Symmetry: Clear from the definition.
Triangle inequality: Let ϕ1, ϕ2, ϕ3 ∈ CP (A,B). Suppose E and ξ1 ∈ S(E , ϕ1) are as
in proposition 2.1.2(ii). Then

β(ϕ2, ϕ3) = inf
{
‖ξ2 − ξ3‖ : ξi ∈ S(E , ϕi), i = 2, 3

}

≤ inf
{
‖ξ2 − ξ1‖ : ξ2 ∈ S(E , ϕ2)

}
+ inf

{
‖ξ1 − ξ3‖ : ξ3 ∈ S(E , ϕ3)

}

= β(ϕ2, ϕ1) + β(ϕ1, ϕ3).

2.2 Intertwiners and computation of Bures distance

The definition of Bures distance is abstract and does not give us indications as to
how to compute it for concrete examples. In this Section, motivated by the work of
[13], we show that Bures distance can be computed using intertwiners between two
(minimal) GNS-constructions of CP-maps.

Suppose E is a common representation module for ϕi and xi ∈ S(E,ϕi), i = 1, 2.
Then ‖x1 − x2‖2 = ‖〈x1 − x2, x1 − x2〉‖ = ‖ϕ1(1) + ϕ2(1)− 2Re(〈x1, x2〉)‖. Thus
β(ϕ1, ϕ2) is completely determined by the subsets {〈x1, x2〉 : xi ∈ S(E,ϕi)} ⊆ B.
This observation leads to the following Definition.

2.2.1 Definition. Given a common representation module E for ϕ1 and ϕ2 define

NE(ϕ1, ϕ2) :=
{
〈x1, x2〉 : xi ∈ S(E,ϕi)

}

and
N(ϕ1, ϕ2) := ∪

E
NE(ϕ1, ϕ2)

where the union is taken over all common representation module E.
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Note that N(ϕ1, ϕ2) ⊆ B is always nonempty. Also if E is a common represen-
tation module for ϕ1 and ϕ2, then

βE(ϕ1, ϕ2) = inf
N∈NE(ϕ1,ϕ2)

‖ϕ1(1) + ϕ2(1)− 2Re(N)‖
1

2 (2.2)

with ϕ1(1) + ϕ2(1)− 2Re(N) = 〈x1 − x2, x1 − x2〉 ≥ 0.

2.2.2 Definition. Let (Ei, xi) be a GNS-construction for ϕi, i = 1, 2. Then define

M(ϕ1, ϕ2) :=
{
〈x1,Φx2〉 : Φ ∈ B

a,bil(E2, E1), ‖Φ‖ ≤ 1
}
.

2.2.3 Lemma. The set M(ϕ1, ϕ2) ⊆ B depends only on the CP-maps ϕi and not
on the GNS-constructions (Ei, xi).

Proof. We show that M(ϕ1, ϕ2) defined via (Ei, xi) coincides with M̂(ϕ1, ϕ2) which

is defined via the minimal GNS-construction (Êi, x̂i). Let Ui : Êi → span s AxiB
be the bilinear unitary satisfying Ui(ax̂ib) = axib for all a ∈ A, b ∈ B. Since

span s AxiB ⊆ Ei is a complemented B-submodule, Ui ∈ B
a,bil(Êi, Ei) is an ad-

jointable isometry ([14], Theorem 3.6). Note that Ui(x̂i) = xi and U∗
i (xi) = x̂i.

Now suppose 〈x1,Φx2〉 ∈ M(ϕ1, ϕ2), where Φ ∈ Ba,bil(E2, E1) with ‖Φ‖ ≤ 1. Set

Φ̂ = U∗
1ΦU2. Then Φ̂ ∈ Ba,bil(Ê2, Ê1) with ‖Φ̂‖ ≤ 1. Also

〈x1,Φx2〉 = 〈U1x̂1,ΦU2x̂2〉 = 〈x̂1, U∗
1ΦU2x̂2〉 = 〈x̂1, Φ̂x̂2〉 ∈ M̂(ϕ1, ϕ2).

Hence M(ϕ1, ϕ2) ⊆ M̂(ϕ1, ϕ2). To get the reverse inclusion start with a Φ̂ ∈
Ba,bil(Ê2, Ê1) and set Φ = U1Φ̂U

∗
2 ∈ Ba,bil(E2, E1).

2.2.4 Proposition. If (Ei, xi) is a GNS-construction for ϕi, i = 1, 2, then

(i) M(ϕ1, ϕ2) = N(ϕ1, ϕ2) = NE1⊕E2
(ϕ1, ϕ2) and

(ii) β(ϕ1, ϕ2) = inf
M∈M(ϕ1,ϕ2)

‖ϕ1(1) + ϕ2(1)− 2Re(M)‖
1

2 .

Proof. (i) Suppose E is a common representation module and 〈z1, z2〉 ∈ NE(ϕ1, ϕ2).
Set E1 = E2 = E and Φ = idE . Then, from above Lemma, 〈z1, z2〉 = 〈z1,Φz2〉 ∈
M(ϕ1, ϕ2). Since z1, z2 and E are arbitrary N(ϕ1, ϕ2) ⊆ M(ϕ1, ϕ2). In particular,
M(ϕ1, ϕ2) is nonempty. For the reverse inclusion, let 〈x1,Φx2〉 ∈ M(ϕ1, ϕ2). Set
z1 = x1 ⊕ 0 and z2 = Φx2 ⊕

√
idE − Φ∗Φx2 in E1 ⊕E2. Then 〈z1, az1〉 = 〈x1, ax1〉 =

ϕ1(a) and

〈z2, az2〉 = 〈Φx2 ⊕
√
idE2

− Φ∗Φx2, a(Φx2)⊕ a
√

idE2
− Φ∗Φx2〉

= 〈Φx2,Φ(ax2)〉+ 〈
√
idE2

− Φ∗Φx2,
√
idE2

− Φ∗Φax2〉
= 〈x2,Φ∗Φ(ax2)〉+ 〈x2, (idE2

− Φ∗Φ)ax2〉
= 〈x2, ax2〉
= ϕ2(a)

for all a ∈ A. Thus (E1⊕E2, zi) is a GNS-construction for ϕi. Note that 〈x1,Φx2〉 =
〈z1, z2〉 ∈ NE1⊕E2

(ϕ1, ϕ2). Hence M(ϕ1, ϕ2) ⊆ NE1⊕E2
(ϕ1, ϕ2). Thus N(ϕ1, ϕ2) ⊆

M(ϕ1, ϕ2) ⊆ NE1⊕E2
(ϕ1, ϕ2) ⊆ N(ϕ1, ϕ2).

(ii) Follows from equation (2.2).

2.2.5 Corollary. If (Ei, xi) is GNS-construction for ϕi, i = 1, 2, then

β(ϕ1, ϕ2) = βE1⊕E2
(ϕ1, ϕ2) = inf

{
‖x1 ⊕ 0− y1 ⊕ y2‖ : y1 ⊕ y2 ∈ S(E1 ⊕E2, ϕ2)

}
.
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Proof. Suppose 〈x1,Φx2〉 ∈ M(ϕ1, ϕ2). Then, from the proof of Proposition 2.2.4,
we have 〈x1,Φx2〉 = 〈z1, z2〉, where zi ∈ S(E1 ⊕ E2, ϕi) with z1 = x1 ⊕ 0. Denote
the z2 obtained by z2(Φ). Then, from proposition 2.2.4(ii),

β(ϕ1, ϕ2) = inf
{
‖ϕ1(1) + ϕ2(1)− 2Re(〈x1 ⊕ 0, z2(Φ)〉)‖

1

2 : Φ ∈ B
a,bil(E2, E1), ‖Φ‖ ≤ 1

}

≥ inf
{
‖ϕ1(1) + ϕ2(1)− 2Re(〈x1 ⊕ 0, y1 ⊕ y2〉)‖

1

2 : y1 ⊕ y2 ∈ S(E1 ⊕ E2, ϕ2)
}

= inf
{
‖x1 ⊕ 0− y1 ⊕ y2‖ : y1 ⊕ y2 ∈ S(E1 ⊕ E2, ϕ2)

}

≥ βE1⊕E2
(ϕ1, ϕ2).

2.2.6 Example. Let (X,F, µ) be a measure space and let A = L∞(X, µ). Consider
the states ϕi : A → C given by ϕi(f) =

∫
fdµi, where µ1 and µ2 are two equivalent

(i.e., absolutely continuous each other) probability measures on (X,F) such that
µi << µ, i = 1, 2. Let h be a positive function (Radon Nikodym derivative) on
X such that dµ1 = hdµ2. Clearly Ei = L2(X, µi) is a von Neumann A-C-module
with left multiplication as the left action. Also (Ei, 1) is a GNS-construction for ϕi.
Suppose g1 ⊕ g2 ∈ S(E1 ⊕E2, ϕ2). Then

∫
fdµ2 = 〈g1 ⊕ g2, f(g1 ⊕ g2)〉

=

∫
|g1|2fdµ1 +

∫
|g2|2fdµ2

=

∫
(|g1|2h + |g2|2)fdµ2

for all f ∈ A, and hence |g1|2h + |g2|2 = 1 a.e., µ2. Therefore

β(ϕ1, ϕ2) = inf
{
‖1⊕ 0− g1 ⊕ g2‖ : g1 ⊕ g2 ∈ S(E1 ⊕E2, ϕ2)

}

= inf
{
(〈1− g1, 1− g1〉+ 〈g2, g2〉)

1

2 : |g1|2h+ |g2|2 = 1 a.e., µ2

}

= inf
{
(2− 2Re(

∫
g1dµ1))

1

2 : |g1|2h ≤ 1 a.e., µ2

}

=
√
2 inf

{
(1−

∫
g1hdµ2)

1

2 : g1 ≥ 0 and 0 ≤ g21h ≤ 1 a.e., µ2

}

=
√
2(1−

∫ √
hdµ2)

1

2 .

In particular, if we take X = {1, 2, . . . , n}, µ the counting measure, µ1(i) = pi and
µ2(i) = qi, where 0 < pi, qi < 1 such that

∑
pi =

∑
qi = 1, then β(ϕ1, ϕ2) =√

2(1−
∑√

piqi)
1

2 .

Here we compute the Bures distance for homomorphisms and for some other
special cases.

2.2.7 Corollary. Let ϕ1, ϕ2 : A → B be two unital ∗-homomorphisms.

(i) Then β(ϕ1, ϕ2) =
√
2 inf

{
‖1− Re(b)‖

1

2 : b ∈ B, ‖b‖ ≤ 1, ϕ1(a)b = bϕ2(a) ∀a ∈
A
}
.

(ii) If A = B and ϕ2(a) = u∗ϕ1(a)u for some unitary u ∈ B, then

β(ϕ1, ϕ2) =
√
2 inf

{
‖1− Re(b′u)‖

1

2 : b′ ∈ ϕ1(A)′, ‖b′‖ ≤ 1
}
.
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(iii) If u ∈ Mn(C) is a unitary and ϕ : Mn(C) → Mn(C) is the ∗-homomorphism
ϕ(a) = u∗au, then

β(id., ϕ) =
√
2 inf

{
‖1− Re(λu)‖

1

2 : λ ∈ [−1, 1]
}
.

Proof. (i) Let Ei be the von Neumann A-B-module B with left action ax := ϕi(a)x
for all a ∈ A, x ∈ Ei. Then (Ei, 1) is the minimal GNS-construction for ϕi. Suppose
Φ ∈ Ba,bil(E2, E1). Then

ϕ1(a)Φ(1) = aΦ(1) = Φ(a1) = Φ(ϕ2(a)) = Φ(1)ϕ2(a)

for all a ∈ A. Clearly, for a fixed b0 ∈ B satisfying ϕ1(a)b0 = b0ϕ2(a), the map
b 7→ b0b is an element of Ba,bil(E2, E1). Thus

β(ϕ1, ϕ2) = inf
{
‖ϕ1(1) + ϕ2(1)− 2Re(M)‖

1

2 :M ∈M(ϕ1, ϕ2)
}

= inf
{
‖2− 2Re(Φ(1))‖

1

2 : Φ ∈ B
a,bil(E2, E1), ‖Φ‖ ≤ 1

}

=
√
2 inf

{
‖1− Re(b)‖

1

2 : b ∈ B, ‖b‖ ≤ 1, ϕ1(a)b = bϕ2(a) ∀a ∈ A
}
.

(ii) Suppose b ∈ B. Then ϕ1(a)b = bϕ2(a) for all a ∈ A implies that bu∗ ∈ ϕ1(A)′,
and hence b = b′u for some b′ ∈ ϕ1(A)′ ⊆ B.

(iii) This follows from (ii), since M ′
n = CI.

In [13] it is shown that the Bures distance is comparable with completely bounded
norm when B = B(G), and the following bounds were obtained. In fact, the lower
bound holds even for an arbitrary unital C∗-algebra B.

2.2.8 Theorem ([13]). For ϕ1, ϕ2 ∈ CP (A,B(G)),

‖ϕ1 − ϕ2‖cb√
‖ϕ1‖cb +

√
‖ϕ2‖cb

≤ β(ϕ1, ϕ2) ≤
√

‖ϕ1 − ϕ2‖cb.

Moreover, there exists a common representation module E and corresponding GNS-
construction (E, xi) for ϕi such that

β(ϕ1, ϕ2) = βE(ϕ1, ϕ2) = ‖x1 − x2‖ .

2.2.9 Example. In general, the upper bound given in Theorem 2.2.8 may fails to
hold if the cb-norm is replaced by the operator norm. For example, consider the
CP-maps ϕi :M2(C) →M2(C) given by

ϕ1(
[
aij

]
) :=

[
a11 + 2a22 a21

a12 a22 + 2a11

]
and ϕ2(

[
aij

]
) :=

[
2a22 0
0 2a11

]
.

Let E = M8×2(C) which is a von Neumann M2(C)-M2(C)-module with module
actions given by

axb :=




ax1b
ax2b
ax3b
ax4b


 ∀x =




x1
x2
x3
x4


 ∈ E and a, b, xi ∈M2(C).
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Then E is a common representation module with

z1 : =

[
1 0 0 0 0

√
3√
2

0 −1√
2

0 0 0 1
√
3√
2

0 1√
2

0

]t

∈ S(E,ϕ1)

and

z2 : =

[
0 0 0 0 0 1 0 −1
0 0 0 0 1 0 1 0

]t
∈ S(E,ϕ2),

where ‘t’ stands for transpose. Note that if x ⊕ y = [xij ] ⊕ [yij] ∈ S(E ⊕ E,ϕ2),
then by evaluating ϕ2 at matrix units, we see that xi1 = yi1 = 0 = xk2 = yk2, i =
1, 3, 5, 7, k = 2, 4, 6, 8 and

∑

i=2,4,6,8

(xi1xi−1,2 + yi1yi−1,2) = 0,

∑

i=2,4,6,8

(|xi1|2 + |yi1|2) = 2 =
∑

i=1,3,5,7

(|xi2|2 + |yi2|2).





(∗)

Hence

β(ϕ1, ϕ2) = inf ‖z1 ⊕ 0− x⊕ y‖

= inf

∥∥∥∥∥

[
5− Re(

√
6x61 −

√
2x81) −x12 − x41

−x12 − x41 5− Re(
√
6x52 +

√
2x72)

]∥∥∥∥∥

1

2

≥ inf

∥∥∥∥∥

[
5− Re(

√
6x61 −

√
2x81) 0

0 5− Re(
√
6x52 +

√
2x72)

]∥∥∥∥∥

1

2

where the infimums are taken over all x ⊕ y ∈ E1 ⊕ E2 satisfying (∗). Now some

elementary calculus shows that β(ϕ1, ϕ2) ≥
√

5−
√
2−

√
6. Note that ‖z1 − z2‖ =√

5−
√
2−

√
6, and hence β(ϕ1, ϕ2) =

√
5−

√
2−

√
6 > 1. But ϕ1 − ϕ2 is the

transpose map. Therefore 1 = ‖ϕ1 − ϕ2‖ < β(ϕ1, ϕ2)
2 < ‖ϕ1 − ϕ2‖cb = 2 (see [18]

for the computation of cb-norm for transpose map).

Theorem 2.2.8 guarantees the existence of a common representation module,
where Bures distance is attained. It is a natural question as to whether Bures
distance is attained in every common representation module. This is true for states
([4]). The question in the general case was asked by [12, 13]. Here we resolve it in
the negative through a simple counter example.

2.2.10 Example. Consider the (normal) CP-maps ϕi : M2(C) → M2(C) given by

ϕi(a) := a∗i aai, where a1 =

[
1 0
0 0

]
and a2 =

[
0 1
0 0

]
. Then (Êi, x̂i) := (M2(C), ai)

is the minimal GNS-construction for ϕi. Set x1 = x̂1 ⊕ 0 and x2 = 0 ⊕ x̂2. Then
xi ∈ S(Ê1 ⊕ Ê2, ϕi) and

β(ϕ1, ϕ2) = βÊ1⊕Ê2
(ϕ1, ϕ2) ≤ ‖x1 − x2‖ = ‖I‖ = 1.

Clearly, E :=M2(C) is a common representation module. It is not hard to see that
S(E,ϕi) = {λai : λ ∈ C, |λ| = 1}. Now for any xi = λiai ∈ S(E,ϕi),

‖x1 − x2‖2 =
∥∥∥∥∥

[
1 −λ1λ2

−λ2λ1 1

]∥∥∥∥∥ = sup

{
|λ| : λ ∈ σ

([
1 −λ1λ2

−λ2λ1 1

])}
= 2.
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Hence βE(ϕ1, ϕ2) =
√
2 > 1 ≥ β(ϕ1, ϕ2). Note that here β(ϕ1, ϕ2) ≤ 1 =√

‖ϕ1 − ϕ2‖.
Conjecture. If ϕ, ψ ∈ CP (A,B), then

β(ϕ, ψ) = sup
φ,n

β(φ ◦ ϕn, φ ◦ ψn)

where the supremum is taken over all states φ :Mn(B) → C, n ≥ 1.

From Proposition 1.3.4 and 1.3.5 we have β(φ◦ϕn, φ◦ψn) ≤ β(ϕn, ψn) = β(ϕ, ψ)
for all states φ : Mn(B) → C, n ≥ 1. If the conjecture can be proved directly, then
using the upper bound for states [7, 13] we get an alternative proof of the upper
bound for Bures metric:

β(ϕ, ψ) = sup
φ,n

β(φ ◦ ϕn, φ ◦ ψn) ≤ sup
φ,n

√
‖φ ◦ ϕn − φ ◦ ψn‖ =

√
‖ϕ− ψ‖cb.

3 Bures distance: C∗-algebras

This Section consists mostly of counter examples. But results similar to the last
section do hold for injective C∗-algebras.

3.1 Counter examples

We saw that if the range algebras are von Neumann algebras, then the Bures metric
can be computed using intertwiners. It was crucial that the space of intertwiners was
independent of the choice of GNS-constructions (Lemma 2.2.3 ). The first example
here shows that this is no longer the case for some range C∗-algebras. We have
another example to show that the upper bound computed for β in Theorem 2.2.8
may not hold for general range C∗-algebras. Finally, as a worst case scenario we
have a tricky example to show that even the triangle inequality may fail to hold.

3.1.1 Example. If ϕ1 and ϕ2 are CP-maps between C∗-algebras, then M(ϕ1, ϕ2)
may depends on the GNS-construction. For example, consider the CP-maps ϕi :
C([0, 2π]) → C([0, 2π]) given by ϕi(f) := gif , where gi(t) = |sin(t)|i for all t ∈
[0, 2π], i = 1, 2. Set x̂i =

√
gi and

Êi = span {√gif : f ∈ C([0, 2π])}
= {f ∈ C([0, 2π]) : f(0) = f(π) = f(2π) = 0}.

Then (Êi, x̂i) is the minimal GNS-construction for ϕi. Define the adjointable bilinear

map Φ̂ : Ê2 → Ê1 by Φ̂(f) = gf , where

g(t) =

{
1
2

if 0 ≤ t < π,

1 if π ≤ t ≤ 2π.

Since Φ̂ is a contraction 〈x̂1, Φ̂x̂2〉 ∈ M̂(ϕ1, ϕ2). We have (Ei, xi) := (C([0, 2π]), x̂i)
is also a GNS-construction for ϕi. Now if Φ : E2 → E1 is an adjointable bilinear
map, then Φ(f) = Φ(1)f for all f ∈ C([0, 2π]). Thus Ba,bil(E2, E1) = {f 7→ hf : h ∈
C([0, 2π])}. Hence if 〈x̂1, gx̂2〉 = 〈x̂1, Φ̂x̂2〉 ∈ M(ϕ1, ϕ2), then 〈x̂1, gx̂2〉 = 〈x̂1, hx̂2〉
for some h ∈ C([0, 2π]); i.e.,

x̂1(t)g(t)x̂2(t) = x̂1(t)h(t)x̂2(t), ∀t ∈ [0, 2π]
⇒ g(t) = h(t), ∀t ∈ [0, 2π]r {0, π, 2π}
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which is not possible since h is continuous on [0, 2π]. So 〈x̂1, Φ̂x̂2〉 /∈M(ϕ1, ϕ2).

3.1.2 Example. Suppose H is an infinite dimensional Hilbert space and p ∈ B(H)
is an orthogonal projection such that both p and q := (1 − p) have infinite rank.
Let A = C∗{K(H)∪ {I}} and let u = λp+ λq, where λ = eiθ is a scalar with −π

2
<

θ < π
2
. Note that u ∈ B(H) is a unitary. Define ∗-homomorphisms ϕi : A → A by

ϕ1(a) := a and ϕ2(a) := u∗au. Now suppose E is a common representation module
for ϕ1, ϕ2 and xi ∈ S(E,ϕi). Since ‖axi − xiϕi(a)‖ = 0, we get axi = xiϕi(a) for all
a ∈ A. Then

a〈x1, x2〉 = ϕ1(a)〈x1, x2〉 = 〈x1, x2〉ϕ2(a) = 〈x1, x2〉u∗au

for all a ∈ A, and hence 〈x1, x2〉u∗ ∈ A′. Therefore 〈x1, x2〉 = λ′u for some λ′ ∈ C.
Since 〈x1, x2〉 ∈ A and u 6∈ A we have λ′ = 0, whence 〈x1, x2〉 = 0. Also since E
and xi ∈ S(E,ϕi) are arbitrary

β(ϕ1, ϕ2) = inf
E,xi

‖x1 − x2‖ = ‖ϕ1(1) + ϕ2(1)‖
1

2 =
√
2.

Now we prove that
√

‖ϕ1 − ϕ2‖cb < β(ϕ1, ϕ2). For a = [aij ] ∈ B(H) = B(Hp ⊕H⊥
p ),

where Hp = ran(p),

‖ϕ1(a)− ϕ2(a)‖ = ‖a− u∗au‖

=

∥∥∥∥
[
a11 a12
a21 a22

]
−
[
λ 0
0 λ

]∗ [
a11 a12
a21 a22

] [
λ 0
0 λ

]∥∥∥∥

=

∥∥∥∥
[

0 (1− λ
2
)a12

(1− λ2)a21 0

]∥∥∥∥

= max
{∥∥(1− λ

2
)a12

∥∥,
∥∥(1− λ2)a21

∥∥}

≤
∣∣1− λ2

∣∣ ‖a‖

so that ‖ϕ1 − ϕ2‖ ≤ |1− λ2|. But a =
[
0 I
I 0

]
is of norm one and ‖(ϕ1 − ϕ2)(a)‖ =

|1− λ2|, whence ‖ϕ1 − ϕ2‖ = |1− λ2| =
∣∣λ(λ− λ)

∣∣ =
∣∣λ− λ

∣∣. Now for all n ≥ 1,
if we let Un, Pn and Qn denote the n × n diagonal matrix with diagonal u, p and
q respectively, then Un = λPn + λQn and (ϕ1 − ϕ2)n(A) = A − U∗

nAUn for all
A ∈Mn(A). Then, as above, we get ‖(ϕ1 − ϕ2)n‖ =

∣∣λ− λ
∣∣. Thus

√
‖ϕ1 − ϕ2‖ =

√
‖ϕ1 − ϕ2‖cb =

√∣∣λ− λ
∣∣ <

√
2 = β(ϕ1, ϕ2).

Now if ϕi is considered as a map into B(H) denote it by ϕ̃i. Then b ∈ ϕ̃1(A)′ ⊆
B(H) implies that ba = ab for all a ∈ K(H) ⊆ A, so that b = λbI for some λb ∈ C.
From Corollary 2.2.7,

β(ϕ̃1, ϕ̃2) =
√
2 inf

{
‖1− Re(λ′u)‖

1

2 : λ′ ∈ C, |λ′| ≤ 1
}

≤
√
2 ‖1− Re(u)‖

1

2

=
√
2 |1− Re(λ)|

1

2

<
√
2

= β(ϕ1, ϕ2).
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3.1.3 Example. Let H be an infinite dimensional Hilbert space. Consider the
unital C∗-subalgebra

A : = C∗

{
K(H ⊕H) ∪

{[
I 0
0 0

]
,

[
0 0
0 I

]}}

=

{[
λ1I + a11 a12

a21 λ2I + a22

]
: λi ∈ C, aij ∈ K(H)

}

of B(H ⊕H), where K(·) is the set of compact operators. Suppose u ∈ B(H) is a
unitary and 1 < r ∈ R. Set

z1 =

[
0 u
0 rI

]
, z2 =

[
0 0
0 rI

]
and z3 =

[
0 I
0 rI

]

in B(H ⊕H). Define CP-maps ϕi : A → A by ϕi(a) := z∗i azi, i = 1, 2, 3. Note that

each ϕi has the form, ϕi(·) =
[
0 0
0 ∗

]
. Let

E12 =

{[
x11 λ1u+ x12
x21 λ2I + x22

]
: λi ∈ C, xij ∈ K(H)

}

which is a Hilbert A-A-module with a natural inner product and bimodule structure.
Note that zi ∈ S(E12, ϕi), i = 1, 2, and hence β(ϕ1, ϕ2) ≤ ‖z1 − z2‖ = 1. Similarly

E23 =

{[
x11 λ1I + x12
x21 λ2I + x22

]
: λi ∈ C, xij ∈ K(H)

}

is a Hilbert A-A-module with zi ∈ S(E23, ϕi), i = 2, 3, and β(ϕ2, ϕ3) ≤ ‖z2 − z3‖ =
1. Now we will show that β(ϕ1, ϕ3) > 2 ≥ β(ϕ1, ϕ2) + β(ϕ2, ϕ3) so that β fails
to satisfy triangle inequality. Suppose E is a common representation module for
ϕ1, ϕ3. We prove that 〈x1, x3〉 = 0 for all xi ∈ S(E,ϕi). If we proved this, then E
and xi ∈ S(E,ϕi) arbitrary implies that

β(ϕ1, ϕ3) = inf
E,xi

‖x1 − x3‖ = ‖ϕ1(1) + ϕ3(1)‖
1

2 =
√

2(1 + r2) > 2.

Suppose 〈x1, x3〉 = [aij ]. Since 0 ≤
[
〈x1, x1〉 〈x1, x3〉
〈x3, x1〉 〈x3, x3〉

]
=




0 0 a11 a12
0 ∗ a21 a22
a∗11 a∗21 0 0
a∗12 a∗22 0 ∗


 we

have a11 = a12 = a21 = 0. Also for all a ∈ K(H), we get
[
a 0
0 0

]
x1 = x1

[
0 0
0 u∗au

]
and

[
a 0
0 0

]
x3 = x3

[
0 0
0 a

]
.

(Simply look at the norm of the difference.) Hence
[
0 0
0 u∗au

]
〈x1, x3〉 = 〈x1, x3〉

[
0 0
0 a

]
;

i.e., [
0 0
0 u∗au

] [
0 0
0 a22

]
=

[
0 0
0 a22

] [
0 0
0 a

]

which implies that u∗aua22 = a22a; i.e., aua22 = ua22a for all a ∈ K(H). Hence
ua22 = λI for some λ ∈ C. Thus a22 = λu∗. Since a22 ∈ K(H) and u∗ /∈ K(H) we
have λ = 0, and hence a22 = 0 and 〈x1, x3〉 = 0.

15



3.2 Injective C∗-algebras

Recall that a C∗-algebra B is an injective C∗-algebra if, whenever C is a C∗-algebra,
S an operator system contained in C, and ϕ : S → B is a completely positive
contraction, then ϕ extends to a completely positive contraction ϕ̃ : C → B. Further,
this is equivalent to saying that there is a faithful representation π of B on a Hilbert
space G, such that there is a conditional expectation from B(G) onto π(B). See
[5, 18, 24] for details.

3.2.1 Proposition. Let A and B be unital C∗-algebras and ϕ1, ϕ2 ∈ CP (A,B).
Suppose B is an injective unital C∗-algebra and π : B → B(G) is a faithful repre-
sentation of B on G. Then β(ϕ1, ϕ2) = β(π ◦ ϕ1, π ◦ ϕ2).

Proof. Since B is injective there exists a completely positive conditional expectation
P : B(G) → π(B). Take ϕ = π−1◦P : B(G) → A. Then ϕ is a contractive CP-map.
Moreover, ϕ ◦ π ◦ ϕi = ϕi, i = 1, 2. Now by Proposition 1.3.5,

β(ϕ1, ϕ2) = β(ϕ ◦ π ◦ ϕ1, ϕ ◦ π ◦ ϕ2) ≤ β(π ◦ ϕ1, π ◦ ϕ2) ≤ β(ϕ1, ϕ2).

From Proposition 1.3.5, we know that β(π ◦ ϕ1, π ◦ ϕ2) ≤ β(ϕ1, ϕ2) even for an
arbitrary C∗-algebra B. But, in general, equality may not holds. See example 3.1.2.

The following bounds were first obtained in [13].

3.2.2 Corollary. If B is an injective unital C∗-algebra, then β is a metric on
CP (A,B) and

‖ϕ1 − ϕ2‖cb√
‖ϕ1‖cb +

√
‖ϕ2‖cb

≤ β(ϕ1, ϕ2) ≤
√

‖ϕ1 − ϕ2‖cb.

Further, there exists common representation module E and corresponding GNS-
construction (E, xi) for ϕi such that

β(ϕ1, ϕ2) = βE(ϕ1, ϕ2) = ‖x1 − x2‖ .

Proof. Suppose π : B → B(G) is a faithful representation of B. Now the first part
follows from Theorem 2.1.3 and Proposition 3.2.1. Also from Theorem 2.2.8 and
Proposition 3.2.1, we have

β(ϕ1, ϕ2) = β(π ◦ ϕ1, π ◦ ϕ2) ≤
√

‖π ◦ ϕ1 − π ◦ ϕ2‖cb =
√

‖ϕ1 − ϕ2‖cb.

Now, from Theorem 2.2.8, we know that there exists a von Neumann A-B(G)-
module F with yi ∈ S(F, π ◦ ϕi) such that ‖y1 − y2‖ = β(π ◦ ϕ1, π ◦ ϕ2). Given b ∈
B, y ∈ F define yb := yπ(b). Under this action, F forms a right B-module, denoted
by E0. Let P : B(G) → π(B) be a completely positive conditional expectation
satisfying P (b1ab2) = b1P (a)b2 for all bi ∈ π(B), a ∈ B(G). Now define a B-valued
semi-inner product on E0 by 〈x1, x2〉′ := π−1P (〈x1, x2〉). Let E be the completion of
the B-valued inner product space E0/N , where N := {x ∈ E0 : 〈x, x〉′ = 0}. Then
E is a Hilbert A-B-module with left action induced by that of A on F . Note that
xi := yi +N ∈ S(E,ϕi), i = 1, 2 are such that

βE(ϕ1, ϕ2) ≤ ‖x1 − x2‖ ≤ ‖y1 − y2‖ = β(π ◦ ϕ1, π ◦ ϕ2) = β(ϕ1, ϕ2).

Thus β(ϕ1, ϕ2) = βE(ϕ1, ϕ2) = ‖x1 − x2‖.
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4 Bures distance and a rigidity theorem

Observe that for the identity map on a unital C∗-algebra B the GNS-module is B
itself. Here we show that if a CP-map on a von Neumann algebra B is close to the
identity map in Bures distance then the GNS-module has a copy of B.

Suppose B ⊂ B(G) is a von Neumann algebra and ϕ : B → B is a CP-map.

4.0.3 Proposition. If (E, x) is the minimal GNS-construction for ϕ, then the fol-
lowing are equivalent:

(i) The center CB(E) := {y ∈ E : by = yb ∀b ∈ B} contains a unit vector.

(ii) E ∼= B ⊕ F for some von Neumann B-B-module F .

(iii) There exists an element c ∈ B such that the two sided (strongly closed) ideal
generated by c is B, and a CP-map ψ : B → B such that

ϕ(b) = c∗bc + ψ(b) ∀b ∈ B.

Proof. (i) ⇒ (ii): Let z ∈ CB(E) be a unit vector. The two sided B-B-module
generated by z is naturally isomorphic to B by bz 7→ b, and let us denote it by Bz.
Then E decomposes as Bz ⊕ (Bz)⊥.

(ii) ⇒ (iii): Without loss of generality, we may take E = B ⊕ F . Then x ∈ E
decomposes as x = c⊕ y with c ∈ B, y ∈ F . Clearly, ϕ(b) = 〈x, bx〉 = c∗bc+ 〈y, by〉,
and we can take ψ(b) = 〈y, by〉 for all b ∈ B. Note that B is the two sided (strongly
closed) ideal generated by c.

(iii) ⇒ (i): Note that the CP-map b 7→ c∗bc is dominated by the CP-map ϕ,
and hence there exists a vector z ∈ E (see [6, 17]) such that c∗bc = 〈z, bz〉 for all
b ∈ B. Note that, for elements a, a′, b, d, d′ ∈ B, (acd)∗b(a′cd′) = d∗(c∗a∗ba′c)d =
d∗〈z, a∗ba′z〉d′ = 〈azd, ba′zd′〉. It follows that for any element d in the (strongly
closed) ideal generated by c, there exists an element zd ∈ E such that d∗bd =
〈zd, bzd〉. Taking d = 1, we have an element w ∈ E such that b = 〈w, bw〉 for all b ∈
B. Observe that w is a unit vector. Direct computation yields 〈bw−wb, bw−wb〉 = 0,
hence w is in the center CB(E).

4.0.4 Theorem. Let ϕ : B → B be a CP-map such that β(id., ϕ) < 1. Let (E, x) be
a GNS-construction for ϕ. Then E ∼= B ⊕ F for some von Neumann B-B-module
F .

Proof. Without loss of generality, assume that (E, x) is the minimal GNS-construction
for ϕ. Let ε > 0 be such that β(id., ϕ)+ ε < 1. Since the identity map has (B, 1) as
its GNS-construction, from Theorem 2.2.5, there exists z1 = 1⊕0, z2 = c⊕y in B⊕E
such that ‖z1 − z2‖ ≤ β(id, ϕ)+ ε < 1 and ϕ(b) = 〈z2, bz2〉 = c∗bc+ 〈y, by〉. Further,
as ‖1− c‖ ≤ ‖z1 − z2‖ < 1 we note that c is invertible. Therefore the ideal generated
by c is whole of B. Now the result follows from the previous Proposition.
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