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BOHR-TYPE INEQUALITIES FOR HARMONIC MAPPINGS WITH A

MULTIPLE ZERO AT THE ORIGIN

YONG HUANG, MING-SHENG LIU ∗, AND SAMINATHAN PONNUSAMY

Abstract. In this paper, we first determine Bohr’s inequality for the class of harmonic
mappings f = h + g in the unit disk D, where either both h(z) =

∑

∞

n=0
apn+mzpn+m

and g(z) =
∑

∞

n=0
bpn+mzpn+m are analytic and bounded in D, or satisfies the condition

|g′(z)| ≤ d|h′(z)| in D\{0} for some d ∈ [0, 1] and h is bounded. In particular, we obtain
Bohr’s inequality for the class of harmonic p-symmetric mappings. Also, we investigate
the Bohr-type inequalities of harmonic mappings with a multiple zero at the origin and
that most of results are proved to be sharp.

1. Preliminaries and some basic questions

The classical theorem of Bohr [14], examined a century ago, generates intensive re-
search activity–what is called Bohr’s phenomena. Determination of the Bohr radius for
analytic functions in a domain [21], as well as for analytic functions from D into par-
ticular domains, such as the punctured unit disk, the exterior of the closed unit disk,
and concave wedge-domains, has been discussed in the literature [1, 2, 3, 5]. See also
the recent survey articles [9, 28, 29] and [22, Chapter 8]. The interest in the Bohr phe-
nomena was revived in the nineties due to the extensions to holomorphic functions of
several complex variables and to more abstract settings. For example in 1997, Boas and
Khavinson [13] found bounds for Bohr’s radius in any complete Reinhard domains and
showed that the Bohr radius decreases to zero as the dimension of the domain increases.
This paper stimulated interests on Bohr type questions in different settings. For example,
Aizenberg [6, 7], Aizenberg et al. [8], Defant and Frerick [16], and Djakov and Ramanu-
jan [18] have established further results on Bohr’s phenomena for multidimensional power
series. Several other aspects and generalizations of Bohr’s inequality may be obtained
from the literature. For instance, Defant [17] improved a version of the Bohnenblust-Hille
inequality and Paulsen [39] proved a uniform algebra analogue of the classical inequal-
ity of Bohr concerning Fourier coefficients of bounded holomorphic functions in 2004. In
[38, 40], the authors demonstrated the classical Bohr inequality using different methods of
operators. Abu Muhanna [1] and, Kayumov and Ponnusamy [24] investigated Bohr’s in-
equality for the class of analytic functions that are subordinate to univalent functions and
odd univalent functions, respectively. On the other hand, Ali et al. [10] discussed Bohr’s
phenomenon for the classes of even and odd analytic functions and also for alternating
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series. In [11, 30, 34, 36], the authors considered the Bohr radius for the family K-
quasiconformal sense-preserving harmonic mappings and the class of all sense-preserving
harmonic mappings, separately. Recently, the articles [35, 41, 42] presented a refined
version of Bohr’s inequality along with few other related improved versions of previously
known results. In particular, after the appearance of the articles [9] and [25], several
investigations and new problems on Bohr’s inequality in the plane case appeared in the
literature (cf. [4, 12, 33, 26, 35, 41, 42]).

One of our aims in this article is to address the harmonic analog of this question (see
Problem 1) raised by Paulsen et al. [38] but with a refined formulation as in [42] (see
Theorem 1).

1.1. Classical Inequality of H. Bohr. Let B be the Schur class of all analytic functions
f on the open unit disk D := {z ∈ C : |z| < 1} such that ‖f‖∞ := supz∈D |f(z)| ≤ 1.
Then the classical inequality examined by Bohr in 1914 [14] states that 1/3 is the largest
value of r ∈ [0, 1) for which the following inequality holds:

(1.1) B(f, r) :=

∞
∑

k=0

|ak|rk ≤ 1

for every analytic function f ∈ B with the Taylor series expansion f(z) =
∑∞

k=0 akz
k.

Bohr actually obtained that (1.1) is true when r ≤ 1/6. Later Riesz, Schur and Wiener,
independently established the Bohr inequality (1.1) for r ≤ 1/3 and that 1/3 is the best
possible constant. It is quite natural that the constant 1/3 is called the Bohr radius for
the space B. Moreover, for

ϕa(z) =
a− z

1− az
, a ∈ [0, 1),

it follows easily that B(ϕa, r) > 1 if and only if r > 1/(1 + 2a), which for a → 1 shows
that 1/3 is optimal. Bohr’s and Wiener’s proofs can be found in [14]. Other proofs of
Bohr’s inequality may be found from [44, 45]. Then it is worth pointing out that there is
no extremal function in B such that the Bohr radius is precisely 1/3 (cf. [22, Corollary
8.26]).

1.2. The Bohr radius for functions having multiple zeros at the origin.

Problem 1. In [38], the authors considered among others for k ∈ N the classes Bk := zkB,
that is,

Bk =
{

f ∈ B : f(0) = · · · = f (k−1)(0) = 0
}

:=
{

zkf : f ∈ B
}

,

and asked for which rk ∈ (0, 1), and

(1.2) f(z) =
∞
∑

n=k

anz
n ∈ Bk

we have the inequality

(1.3)
∞
∑

n=k

|an|rn ≤ 1 for r ∈ [0, rk]



Bohr-type inequalities for harmonic mappings with a multiple zero 3

and for each r ∈ (rk, 1) there exists a function fk(z) =
∑∞

n=k a
(k)
n zn in Bk such that

∑∞
n=k |a

(k)
n |rn > 1. Here the constant rk is referred to as the Bohr radius of order k.

Clearly, B0 = B, and B1 = {f ∈ B : f(0) = 0}. For f ∈ B1 (i.e. for k = 1), Tomić
[45] proved that (1.3) holds for 0 ≤ r ≤ 1/2 (also obtained by Landau independently, see
[31]). Later Ricci [43] established that this holds for 0 ≤ r ≤ 3/5, and the largest value of
r for which (1.3) holds would lie in the interval (3/5, 1/

√
2]. Later in 1962, Bombieri [15]

found that the inequality (1.3) holds for r ∈ [0, 1/
√
2], where the upper bound cannot be

improved. An alternate proof of this result may be found from a recent paper of Kayumov
and Ponnusamy [27] in which they solved an open problem of Djakov and Ramanujan
on powered Bohr inequality. However, Problem 1 for k ≥ 2 remains open. On the other
hand, in connection with Problem 1, Ponnusamy and Wirths [42] proved the following
sharp inequalities for k ≥ 2 while the case k = 1 has been proved in [41]:

Theorem A. For k ≥ 1, let f ∈ Bk have an expansion (1.2) and

M1
k (f, r) =

∞
∑

n=k

|an| rn +
(

1

1 + |ak|
+

r

1− r

) ∞
∑

n=k+1

|an|2 r2n−k

and

Mk(f, r) =

∞
∑

n=k

|an| rn +
(

1

1 + |ak|
+

r

1− r

) ∞
∑

n=k

|an|2 r2n−k.

Then we have the following inequalities:

(1) M1
k (f, r) ≤ 1 is valid for r ∈ [0, Rk] , where Rk is the unique root in (0, 1) of the

equation

4(1− r)− rk−1
(

1− 2r + 5r2
)

= 0.

The upper bound Rk cannot be improved.
(2) Mk(f, r) ≤ 1 is valid for r ∈ [0, Sk], where Sk is the unique root in (0, 1) of the

equation

2(1− r)− rk(3− r) = 0.

The upper bound Sk cannot be improved. Also, as M1
k (f, r) ≤ Mk(f, r), it follows

that Sk ≤ Rk.
(3) With |ak| = a ∈ (0, 1] being fixed, Mk(f, r) ≤ 1 is valid for r ∈ [0, ρk(a)], where

ρk(a) is the unique root in (0, 1) of the equation

(1 + a)(1− r)− rk
[

2a2 + a + r
(

1− 2a2
)]

= 0.

The upper bound ρk(a) cannot be improved.

Remark 1. We note that ρk(1) = Sk. As M
1
k (f, r) ≤Mk(f, r), it follows that Sk ≤ Rk.
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1.3. The Bohr radius for p-symmetric functions. Recently, Kayumov et al. [25]
have obtained the following general result. As a corollary to this, an open problem raised
by Ali et al. [10] about the determination of Bohr radius for odd functions from B has
been settled affirmatively.

Theorem B. ([25]) Let m, p ∈ N, m ≤ p, and f ∈ B with f(z) =
∑∞

k=0 apk+mz
pk+m.

Then

B(f, r) =

∞
∑

k=0

|apk+m|rpk+m ≤ 1 for r ≤ rp,m,

where rp,m is the maximal positive root of the equation −6rp−m + r2(p−m) + 8r2p + 1 = 0.
The extremal function has the form zm(zp − a)/(1− azp), where

a =



1−

√

1− r2pp,m
√
2





1

rpp,m
.

Remark 2. We note that the case m = 0 is trivial as it follows from the classical theorem
of H. Bohr with a change of variable ζ = zp. This gives the condition r ≤ rp,0 = 1/ p

√
3.

The case p = 2 and m = 1 corresponds to the question raised by Ali et al. [10].

1.4. The Bohr radius for harmonic functions. In [30], the authors initiated the
discussion on Bohr radius for the class of complex-valued function f = u + iv harmonic
in D, where u and v are real-valued harmonic functions of D. It follows that f admits
the canonical representation f = h + g, where h and g are analytic in D such that
f(0) = 0 = g(0). The Jacobian Jf(z) of f is given by Jf(z) = |h′(z)|2 − |g′(z)|2, and
we say that a locally univalent harmonic function f in D is said to be sense-preserving if
Jf(z) > 0 in D; or equivalently, its dilatation ω = g′/h′ is an analytic function in D which
maps D into itself (cf. [19] or [32]).

If a locally univalent and sense-preserving harmonic mapping f = h + g satisfies the
condition |ω(z)| ≤ d < 1 in D, then f is called K-quasiregular harmonic mapping on D,
where K = 1+d

1−d
≥ 1 (cf. [23, 37]). Obviously d→ 1 corresponds to the case K → ∞.

For a harmonic function f = h+ g in D, where h and g admit power series expansions
of the form h(z) =

∑∞
n=0 anz

n and g(z) =
∑∞

n=0 bnz
n, we denote the classical Bohr sum

by

BH(f, r) := B(h, r) +B(g, r) =

∞
∑

n=0

(|an|+ |bn|)rn.

A harmonic function f = h + g in D is said to be p-symmetric if h and g have the form
h(z) =

∑∞
n=0 anz

pn+m and g(z) =
∑∞

n=0 bnz
pn+m for some m ∈ N0 = N ∪ {0}. Harmonic

extension of the classical Bohr theorem was established first in [30]. For example, they
proved the following result (Theorem 3). Furthermore, the Bohr radii for harmonic and
starlike log harmonic mappings in D were investigated, for example, in [20, 25, 30, 36],
and in some cases in improved form.

Theorem C. ([30]) Let p ∈ N and p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

n=0 anz
pn+1 +

∑∞
n=0 bnz

pn+1 is a harmonic p-symmetric function in D, where h and
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g are bounded functions in D. Then

BH(f, r) =

∞
∑

n=0

(|an|+ |bn|)rpn+1 ≤ max{‖h‖∞, ‖g‖∞} for r ≤ 1/2.

The number 1/2 is sharp.

It is natural to raise the following.

Problem 2. Whether Theorem C holds under a weaker hypotheses, namely, by replacing
the condition “boundedness of h and g” by “|g′(z)| ≤ |h′(z)| and h is bounded.”

In Theorem 1, we present an affirmative answer to this question in a more general
setting.

The paper is organized as follows. In Section 2, we present the main results of this
paper. In Theorem 1, we present an affirmative answer to Problem 2 in a general form,
and Corollary 2 answers Problem 2. As consequence, generalization Theorem C (with of
higher order zero at the origin) is established (see Theorem 2). In Section 3, we state
and prove several lemmas. In addition, we present the proof of Bohr’s inequalities for the
class of harmonic mappings, which improve the first two items in Theorems A and C.

In Section 4, we state and prove three theorems which extend three recent results of
Ponnusamy et al. [42] from the case of analytic functions to the case of sense-preserving
harmonic mappings.

2. Main Results

We now state a generalization of Theorem C in a general setting and the next result
(Theorem 2) is a direct generalization of Theorem C.

Theorem 1. Let m, p ∈ N, p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akz
pk+m +

∑∞
k=0 bkz

pk+m is harmonic and p-symmetric in D such that |h(m)(0)| = |g(m)(0)| and
|g′(z)| ≤ d|h′(z)| in D\{0} for some d ∈ [0, 1], where h is bounded. Then the following
hold:

(1) If p

m
> log2(2 + d), then

BH(f, r) =
∞
∑

k=0

(|ak|+ |bk|)rpk+m ≤ ‖h‖∞ for r ≤ m

√

1

2
.

When d = 1, the extremal mapping has the form f(z) = h(z) + λh(z) with h(z) =
zm and |λ| = 1.

(2) If 1 ≤ p

m
≤ log2(2 + d), then

BH(f, r) ≤ ‖h‖∞ for r ≤ rp,m,d,

where rp,m,d is the maximal positive root of the equation

(2.1) r2(p−m) − (8 + 4d)rp−m + 4(1 + d)(3 + d)r2p + 4 = 0.
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When d = 1, the extremal function is given by f(z) = h(z)+λh(z), |λ| = 1, where

h(z) = zm
(

zp − a

1− azp

)

, with a =



1−

√

1− r2pp,m,1√
2





1

rpp,m,1

.

Corollary 1. Suppose that m, p ∈ N, and f(z) =
∑∞

k=0 apk+mz
pk+m ∈ Bpk+m.

(1) If 1 ≤ p

m
≤ log2 3 ≈ 1.58496, then

B(f, r) ≤ 1

2
for r ≤ rp,m,

where rp,m is the maximal positive root of the equation

(2.2) − 12rp−m + r2(p−m) + 32r2p + 4 = 0.

The extremal function is given by

(2.3) f(z) = zm
(

zp − a

1− azp

)

, with a =



1−

√

1− r2pp,m
√
2





1

rpp,m
.

(2) If p

m
> log2 3, then

B(f, r) ≤ 1

2
for r ≤ m

√

1

2
.

The extremal function has the form zm.

Proof. Apply the method of the proof of Theorem 1 (by setting d = 1, g(z) ≡ 0). �

We now state a direct generalization of Theorem C.

Theorem 2. Let m, p ∈ N, p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 apk+mz
pk+m

+
∑∞

k=0 bpk+mzpk+m is harmonic in D, where h and g are bounded. The following hold:

(1) If p

m
> log2 3 ≈ 1.58496, then

BH(f, r) ≤ max{‖h‖∞, ‖g‖∞} for r ≤ m

√

1

2
.

The extremal function is given by f(z) = zm + λzm, |λ| = 1.
(2) If 1 ≤ p

m
≤ log2 3, then

BH(f, r) ≤ max{‖h‖∞, ‖g‖∞} for r ≤ rp,m,

where rp,m is the maximal positive root in (0, 1) of the equation (2.2).

The extremal function is given by f(z) = h(z) + λh(z), |λ| = 1, where

h(z) = zm
(

zp − a

1− azp

)

, with a =



1−

√

1− r2pp,m
√
2





1

rpp,m
.

Remark 3. If we set m = 1 in Theorem 2(1), then we get Theorem C.

Note that the following corollary generalizes Theorem 2 under the conditions “|h′(0)| =
|g′(0)| and |g′(z)| ≤ |h′(z)| in D\{0}” instead of “h and g being bounded in D.”
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Corollary 2. Let m, p ∈ N, p ≥ 2. Suppose that f(z) = h(z) + g(z) =
∑∞

k=0 akz
pk+m +

∑∞
k=0 bkz

pk+m is harmonic and p-symmetric in D such that |h′(0)| = |g′(0)| and |g′(z)| ≤
|h′(z)| in D\{0}, where h is bounded. Then the conclusions (1) and (2) of Theorem 2
continue to hold.

Proof. Set d = 1 in Theorem 1 and let rp,m := rp,m,1. �

Because of its independent interest, let us next state the following result as a corollary
to Theorems A Indeed, applying the analogous methods as in the proofs of the three cases
of Theorems A, we have the following. So we omit the details.

Corollary 3. For k ≥ 1, m, p ∈ N and m ≤ p, we let f(z) =
∑∞

n=k apn+mz
pn+m ∈ Bpk+m

and

M1
pk+m(f, r) =

∞
∑

n=k

|apn+m| rpn+m +

(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k+1

|apn+m|2 rp(2n−k)+m

and

Mpk+m(f, r) =

∞
∑

n=k

|apn+m| rpn+m +

(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k

|apn+m|2 rp(2n−k)+m.

Then we have the following inequalities:

(1) M1
pk+m(f, r) ≤ 1 is valid for r ∈ [0, vk], where vk is the unique root in (0, 1) of the

equation

4 (1− rp)− rp(k−1)+m
(

5r2p − 2rp + 1
)

= 0.

The upper bound vk cannot be improved.
(2) Mpk+m(f, r) ≤ 1 is valid for r ∈ [0, ωk], where ωk is the unique root in (0, 1) of the

equation

2 (1− rp)− rpk+m (3− rp) = 0.

The upper bound ωk cannot be improved.
(3) With |apk+m| = a ∈ (0, 1] being fixed, Mpk+m(f, r) ≤ 1 is valid for r ∈ [0, ηk],

where ηk is the unique root in (0, 1) of the equation

(1 + a) (1− rp)− rpk+m
[

2a2 + a + rp
(

1− 2a2
)]

= 0.

The upper bound ηk cannot be improved.

Proof. The desired conclusion follows if we write f(z) as f(z) = zmt(zp), where t(z) =
∑∞

n=k apn+mz
n ∈ Bk, and apply the proof of Theorem A. �

Next we generalize Theorem A or Corollary 3 by establishing Bohr-type inequalities for
harmonic mappings with multiple zero at the origin.

Theorem 3. Let k ≥ 1, m, p ∈ N and m ≤ p. Suppose that f = h+ g is harmonic in D,
where h and g are given by

h(z) =
∞
∑

n=k

apn+mz
pn+m and g(z) =

∞
∑

n=k

bpn+mz
pn+m.(2.4)
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In addition, let |g′(z)| ≤ d|h′(z)| in D\{0} for some d ∈ [0, 1] and h ∈ Bpk+m. Define
(2.5)

Mpk+m(h, r) =
∞
∑

n=k

|apn+m| rpn+m +

(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k

|apn+m|2 rp(2n−k)+m,

and

Npk+m(g, r) =

∞
∑

n=k

|bpn+m| rpn+m +

(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k

|bpn+m|2 rp(2n−k)+m.

Then the inequality

Mpk+m(h, r) +Npk+m(g, r) ≤ 1(2.6)

is valid for r ∈ [0, rk], where rk = min{r′k, 1/ p
√
3}, and r′k is the unique root in (0, 1) of

the equation tk(r) = 0, where

(2.7) tk(r) =
2

d+ 1
(1− rp)− rpk+m (3− rp) .

Theorem 4. Let k ≥ 2, m, p ∈ N and m ≤ p. Suppose that f = h+ g is harmonic in D,
where h and g are given by (2.4), In addition, let h, g ∈ Bpk+m and define

M1
pk+m(h, r) =

∞
∑

n=k

|apn+m| rpn+m +

(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k+1

|apn+m|2 rp(2n−k)+m.

Then the inequality

(2.8) M1
pk+m(h, r) +M1

pk+m(g, r) ≤ 1

is valid for r ∈ [0, τk], where τk is the unique root in (0, 1) of the equation

2 (1− rp)− rp(k−1)+m
(

5r2p − 2rp + 1
)

= 0.

The upper bound τk cannot be improved.

Theorem 5. Let k ≥ 2, m, p ∈ N and m ≤ p. Suppose that f = h+ g is harmonic in D,
where h and g are given by (2.4), and h, g ∈ Bpk+m. Then the inequality

Mpk+m(h, r) +Mpk+m(g, r) ≤ 1(2.9)

is valid for r ∈ [0, θk], where Mpk+m(h, r) is given by (2.5) and θk is the unique root in
(0, 1) of the equation

(1− rp)− rpk+m (3− rp) = 0.

The upper bound θk cannot be improved as f(z) = h(z)+λh(z) shows, where h(z) = zpk+m

and |λ| = 1.

Our next result is similar to Theorem 4, but for fixed initial coefficients apk+m and
bpk+m having same modulus value.

Theorem 6. Let k ≥ 2, m, p ∈ N and m ≤ p. Suppose that f = h+ g is harmonic in D,
where h and g are given by (2.4), and h, g ∈ Bpk+m. Let |apk+m| = |bpk+m| = a ∈ (0, 1] be
fixed. Then the inequality

Mpk+m(h, r) +Mpk+m(g, r) ≤ 1(2.10)
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is valid for r ∈ [0, ςk], where ςk = ςk(a) is the unique root in (0, 1) of the equation

(1 + a) (1− rp)− 2rpk+m
[

2a2 + a+ rp
(

1− 2a2
)]

= 0.

The upper bound ςk cannot be improved.

Remark 4. Clearly, ςk(1) = θk. Also, it is possible to fix both |apk+m| and |bpk+m|
separately and obtain an analogous general result than Theorem 6.

3. Key lemmas and their Proofs

In order to establish our main results, we need the following lemmas.

Lemma 1. Suppose that m, p ∈ N, m ≤ p, d ∈ (0, 1], and r = rp,m,d is as in Theorem 1,
i.e. the root of (2.1) in (0, 1). Then

rp+m ≤ 1

3 + d
.

Proof. Let y = rp+m
p,m,d. Then (2.1) becomes a quadratic equation in y of the form
(

4(1 + d)(3 + d) +
1

r2mp,m,d

)

y2 − (8 + 4d)y + 4r2mp,m,d = 0,

which has two solutions

y =
4 + 2d± 2

√

(1 + d)(3 + d)
√

1− 4r2mp,m,d

4(1 + d)(3 + d) + 1
r2m
p,m,d

≤
4 + 2d+ 2

√

(1 + d)(3 + d)
√

1− 4r2mp,m,d

4(1 + d)(3 + d) + 1
r2m
p,m,d

≤ 1

2



sup
2 + d+

√

(1 + d)(3 + d)
√

1− 4r2mp,m,d

(1 + d)(3 + d) + 1
4r2m

p,m,d





and therefore, it is a simple exercise to see that

rp+m
p,m,d ≤ 1

2

(

sup
t∈(0,1]

2 + d+
√

(1 + d)(3 + d)
√
1− t

(1 + d)(3 + d) + 1
t

)

=
1

2

(

2 + d+
√

(1 + d)(3 + d)
√
1− t

(1 + d)(3 + d) + 1
t

)∣

∣

∣

∣

∣

t= 2

3+d

=
1

3 + d
,

which completes the proof of the lemma. �
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Lemma 2. Suppose that m, p ∈ N, m ≤ p, d ∈ (0, 1], and r = rp,m,d is as in Theorem 1,
i.e. the root of (2.1) in (0, 1). Then

1

rp−m
(2 + d−

√

(1 + d)(3 + d)
√
1− r2p) =

1

2
.

Proof. Suppose that m < p and let y = rp−m. Then (2.1) reduces to a quadratic equation
in y

y2 − (8 + 4d)y + 4(1 + d)(3 + d)r2p + 4 = 0,

which has two solutions

y1 = 4+2d+2
√

(1 + d)(3 + d)
√
1− r2p > 1 and y2 = 4+2d−2

√

(1 + d)(3 + d)
√
1− r2p.

The solution y = y1 is impossible because all positive roots of the initial equation must
be less than 1. Therefore,

y = y2 = 2
(

2 + d−
√

(1 + d)(3 + d)
√
1− r2p

)

.

Now, consider the case m = p. In this case

rm,m,d =

(

3 + 4d

4(1 + d)(3 + d)

)
1

2m

so that
1

rp−m

(

2 + d−
√

(1 + d)(3 + d)
√
1− r2m

)

= 2 + d−
√

(1 + d)(3 + d)

√

1− 3 + 4d

4(1 + d)(3 + d)

= 2 + d−
(

2d+ 3

2

)

=
1

2
,

and the proof is complete. �

Lemma 3. ([24]) Let 0 < R ≤ 1. If g(z) =
∑∞

k=0 bkz
k is analytic and satisfies the

inequality |g(z)| ≤ 1 in D. Then the following sharp inequality holds:

(3.1)

∞
∑

k=1

|bk|2Rpk ≤ Rp (1− |b0|2)2
1− |b0|2Rp

.

Lemma 4. ([41]) If f ∈ B has the expansion f(z) =
∑∞

n=0 anz
n, then

∞
∑

n=0

|an| rn +
(

1

1 + |a0|
+

r

1− r

) ∞
∑

n=1

|an|2 r2n ≤ |a0|+
r

1− r
(1− |a0|2).
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4. Bohr’s inequality for the class of harmonic mappings

4.1. Proof of Theorem 1. Given that |g′(z)| ≤ d|h′(z)| for some d ∈ (0, 1], where

h(z) =

∞
∑

k=0

akz
pk+m and g(z) =

∞
∑

k=0

bkz
pk+m.

We integrate inequality |g′(z)|2 ≤ d2|h′(z)|2 over the circle |z| = r and get

∞
∑

k=0

(pk +m)2|bk|2r2(pk+m−1) ≤ d2
∞
∑

k=0

(pk +m)2|ak|2r2(pk+m−1).

We integrate the last inequality with respect to r2 and obtain

∞
∑

k=0

(pk +m)|bk|2r2(pk+m) ≤ d2
∞
∑

k=0

(pk +m)|ak|2r2(pk+m).

One more integration (after dividing by r2) gives

∞
∑

k=0

|bk|2r2(pk+m) ≤ d2
∞
∑

k=0

|ak|2r2(pk+m),

which (since |a0| = |b0| by hypothesis) yields

(4.1)
∞
∑

k=1

|bk|2rpk ≤ d2
∞
∑

k=1

|ak|2rpk for r < 1.

For simplicity, we suppose that ‖h‖∞ = 1.
Following the idea from [24] (see also [25, Proof of Theorem 1]), one can obtain firstly

that

B(h, r) = rm
∞
∑

k=1

|ak|rpk ≤ rp+m(1− a2)
√

1− a2rpρp
1√

1− ρ−prp
,(4.2)

where a = |a0|, and for any ρ > 1 such that ρr ≤ 1. Indeed, we may let h(z) = zmt(zp),
where t(z) =

∑∞
k=0 akz

k ∈ B. Also, let r = rp,m,d and |a0| = a. Then, as in [25, Proof of
Theorem 1], it follows easily that

∞
∑

k=1

|ak|rpk ≤

√

√

√

√

∞
∑

k=1

|ak|2ρpkrpk
√

√

√

√

∞
∑

k=1

ρ−pkrpk

≤
√

rpρp
(1− a2)2

1− a2rpρp

√

ρ−prp

1− ρ−prp
=

rp(1− a2)
√

1− a2rpρp
1√

1− ρ−prp
,(4.3)

for any ρ > 1 such that ρr ≤ 1. In the first and the second steps above we have used
the classical Cauchy-Schwarz inequality, and (3.1) with R = ρr in Lemma 3, respectively.
Hence, (4.2) follows.
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Secondly, using the classical Cauchy-Schwarz inequality and (4.1), we see that

∞
∑

k=1

|bk|rpk ≤

√

√

√

√

∞
∑

k=1

|bk|2ρpkrpk
√

√

√

√

∞
∑

k=1

ρ−pkrpk

≤ d

√

√

√

√

∞
∑

k=1

|ak|2ρpkrpk
√

ρ−prp

1− ρ−prp
(by (4.1))

and thus, by (4.3) we have

B(g, r) = rm
∞
∑

k=1

|bk|rpk ≤ drp+m(1− a2)
√

1− a2rpρp
1√

1− ρ−prp
(4.4)

for any ρ > 1 such that ρr ≤ 1. Consequently, by combining the inequalities (4.2) and
(4.4), we get

BH(f, r) = rm

(

|a0|+ |b0|+
∞
∑

k=1

|ak|rpk +
∞
∑

k=1

|bk|rpk
)

≤ 2rm

(

a+
1 + d

2

rp(1− a2)
√

1− a2rpρp
1√

1− ρ−prp

)

.(4.5)

We wish to maximize the right hand side of above. For this, we need to consider the cases
a ≥ rp and a < rp, separately. Note that our choice of ρ is such that ρr ≤ 1.

Case 1. Assume that a ≥ rp.

In this case we set ρ = 1
p
√
a
and obtain from (4.5) that

(4.6) BH(f, r) ≤ 2rmψ(a) for a ≥ rp,

where we let α = rp and

ψ(x) = x+
α(1 + d)

2
· 1− x2

1− αx
, x ∈ [0, 1].

Simple computation shows that, when α ≥ 1
2+d

, ψ(x) attains its maximum at x = x1,
where

x1 =

(

1−
√

1 + d

3 + d

√
1− α2

)

1

α
,

and thus, ψ(x) ≤ ψ(x1). On the other hand, when α < 1
2+d

, ψ(x) is monotonically

increasing for x ∈ [0, 1] so that ψ(x) ≤ ψ(1) = 1. Consequently, for the r = rp,m,d defined
as in Theorem 1 and α ≥ 1

2+d
, it follows from (4.6) that

(4.7) BH(f, r) ≤ 2rmψ(x1) =
2

rp−m

(

2 + d−
√

(1 + d)(3 + d)
√
1− r2p

)

= 1,

where we have used Lemma 2 for the equality sign on the right. When α < 1
2+d

, we have
ψ(x) ≤ ψ(1) = 1 and thus,

BH(f, r) ≤ 2rmψ(1) = 2rm.
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Case 2. Assume that a < rp.

In this case we set ρ = 1
r
and obtain from (4.5) that

(4.8) BH(f, r) ≤ 2rm
(

a +
1 + d

2
· rp

√
1− a2√
1− r2p

)

≤ (3 + d)rp+m ≤ 1.

Here the second inequality on the right follows from the argument that we omitted the
critical point

a =

√
1− r2p

√

1 +
(

(1+d)2

4
− 1
)

r2p

because it is less than rp only in the case r2p > 2
3+d

≥ 1
2
, which contradicts with Lemma

1. The third inequality on the right in (4.8) follows from Lemma 1.
Therefore, in both cases, for all a ∈ [0, 1), we have

(i) when α = rp ≥ 1
2+d

,

BH(f, r) ≤ 1 for r ≤ rp,m,d,

where rp,m,d is defined as in Theorem 1.
(ii) when α = rp < 1

2+d
, since max{2rm, (3 + d)rp+m} = 2rm, we have

BH(f, r) ≤ 2rm.

In summary, if rm = 1
2
and rp < 1

2+d
, that is, if p

m
> log2(2 + d), we have by the second

case above

BH(f, r) ≤ 2rm ≤ 1, for r ≤ m

√

1

2
.

The extremal function for the case d = 1 is f(z) = h(z) + λh(z) with h(z) = zm and
|λ| = 1.

When 1 ≤ p

m
≤ log2(2 + d), we apply the first case above to obtain

B(f, r) ≤ 1

2
for r ≤ rp,m,d,

where rp,m,d is defined as in Theorem 1.

For the case d = 1, sharpness follows if we consider f(z) = h(z) + λh(z) with |λ| = 1,

h(z) = zm
(

zp − a

1− azp

)

, a =



1−

√

1− r2pp,m,1√
2





1

rpp,m,1

,

and then calculate the Bohr radius for it. It coincides with r. �

4.2. Proof of Theorem 2. Without loss of generality, we may assume that

max{‖h‖∞, ‖g‖∞} = 1.

Case 3. Assume that 1 ≤ p

m
≤ log2 3.

It follows from Corollary 1(1) and the hypothesis that B(h, r) ≤ 1
2
and B(g, r) ≤ 1

2
for

r ≤ rp,m, where rp,m is as in Theorem 2. Adding these two inequalities shows that

BH(f, r) = B(h, r) +B(g, r) ≤ 1 for r ≤ rp,m.
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Case 4. Assume that p

m
> log2 3.

Applying the method of the previous case, Corollary 1(2) gives

BH(f, r) = B(h, r) +B(g, r) ≤ 1, for r ≤ m

√

1

2
.

The extremal functions given in the statement are easy to verify. �

5. Bohr-type inequalities for harmonic mappings with a multiple zero at

the origin

5.1. Proof of Theorem 3. By assumption, |g′(z)| ≤ d|h′(z)| for some d ∈ [0, 1). Then

ωf = g′

h′
is analytic in the punctured disk 0 < |z| < 1 and has removable singularity at

the origin with

lim
z→0

ωf(z) =
bpk+m

apk+m

so that |bpk+m| ≤ d|apk+m| < |apk+m|.
Since h ∈ Bpk+m, by applying Lemma 4 to the function H(z) =

∑∞
n=0Anz

pn, An =
ap(n+k)+m, one has

(5.1)
∞
∑

n=0

|An|rpn +
(

1

1 + |A0|
+

rp

1− rp

) ∞
∑

n=1

|An|2r2pn ≤ |A0|+
(

1− |A0|2
) rp

1− rp
.

Multiplying both sides of the inequality (5.1) by the number rpk+m, and then adding the

term rpk+m|A0|2
(

1
1+|A0| +

rp

1−rp

)

to both sides, we have

Mpk+m(h, r) ≤ rpk+m

[

|A0|+
rp

1− rp
+

|A0|2
1 + |A0|

]

= rpk+m

(

rp

1− rp
+G(|A0|)

)

,(5.2)

where G(t) = t + t2(1 + t)−1. Since G′(t) > 0 on [0, 1], it follows that G(t) ≤ G(1) = 3/2
and thus, (5.2) implies

(5.3) Mpk+m(h, r) ≤ rpk+m

(

rp

1− rp
+

3

2

)

= rpk+m

(

3− rp

2(1− rp)

)

.

Next, since |g′(z)| ≤ d|h′(z)| for z ∈ D, we have (cf. [11])
∞
∑

n=k

|bpn+m| rpn+m ≤ d

∞
∑

n=k

|apn+m| rpn+m for r ≤ 1/
p
√
3,(5.4)

and, as in the proof of Theorem 1,
∞
∑

n=k

|bpn+m|2 rp(2n−k)+m ≤ d2
∞
∑

n=k

|apn+m|2 rp(2n−k)+m.(5.5)

Thus we conclude from (5.2), (5.4) and (5.5) that

Npk+m(g, r) ≤ d

∞
∑

n=k

|apn+m| rpn+m + d2
(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k

|apn+m|2 rp(2n−k)+m

which by combining with (5.2) gives
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Mpk+m(h, r) +Npk+m(g, r)

≤ (1 + d)
∞
∑

n=k

|apn+m| rpn+m + (1 + d2)

(

1

1 + |apk+m|
+

rp

1− rp

) ∞
∑

n=k

|apn+m|2 rp(2n−k)+m

= (d− d2)
∞
∑

n=k

|apn+m| rpn+m + (1 + d2)Mpk+m(h, r)

≤ (d− d2)Mpk+m(h, r) + (1 + d2)Mpk+m(h, r) = (d+ 1)Mpk+m(h, r),

which, by (5.3), is less than or equal to 1 if

rpk+m

(

3− rp

2(1− rp)

)

≤ 1

1 + d
, i.e., tk(r) ≥ 0,

where tk(r) is given by (2.7); that is,

tk(r) =
2

d+ 1
(1− rp)− rpk+m (3− rp) .

This proves the first part of the assertion.
Now we prove the uniqueness of the solution in (0, 1) of tk(r) = 0, we compute that

tk(0) = 2/(d+ 1) > 0, tk(1) = −2 < 0, and

t′k(r) = − 2p

d+ 1
rp−1 − 3(pk +m)rpk+m−1 + (p(k + 1) +m)rp(k+1)+m−1

= −p
(

2

d+ 1
rp−1 − rp(k+1)+m−1

)

− (pk +m)rpk+m−1 (3− rp)

≤ −p
(

rp−1 − rp(k+1)+m−1
)

− (pk +m)rpk+m−1 (3− rp) < 0,

showing that tk(r) is a decreasing function of r in (0, 1), and thus, tk(r) = 0 has a unique
root in (0, 1). �

5.2. Proof of Theorem 4. By assumption h ∈ Bpk+m. Therefore, as in the proof of
Theorem 3, we can apply Lemma 4 to the function H(z) =

∑∞
n=0Anz

pn, An = ap(n+k)+m.
Thus, (5.1) holds. Multiplying the inequality (5.1) by rpk+m gives

M1
pk+m(h, r) ≤ rpk+m

[

|A0|+
(

1− |A0|2
) rp

1− rp

]

.

Now, we can maximize the right hand side with respect to |A0| by fixing r. A simple
calculation shows that we arrive at the maximum value rpk+mM(r) which is achieved at

|A0| = 1, if r ∈
[

0, 1
p
√
3

]

, and at |A0| = 1−rp

2rp
in the remaining cases. Thus, we have the

maximum value
rp(k−1)+m (5r2p − 2rp + 1)

4 (1− rp)

and therefore,

M1
pk+m(h, r) ≤ rpk+m

[

|A0|+
(

1− |A0|2
) rp

1− rp

]

≤ rp(k−1)+m (5r2p − 2rp + 1)

4 (1− rp)
.
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Again, as g ∈ Bpk+m, we have similarly the inequality

M1
pk+m(g, r) ≤ rpk+m

[

|B0|+
(

1− |B0|2
) rp

1− rp

]

≤ rp(k−1)+m (5r2p − 2rp + 1)

4 (1− rp)
,

where B0 = bpk+m. Adding the two resulting inequalities yields that

M1
pk+m(h, r) +M1

pk+m(g, r) ≤
rp(k−1)+m (5r2p − 2rp + 1)

2 (1− rp)
.

Hence the desired inequality (2.8), i.e. M1
pk+m(h, r) +M1

pk+m(g, r) ≤ 1, holds whenever
Lk(r) ≥ 0, where

Lk(r) = 2 (1− rp)− rp(k−1)+m
(

5r2p − 2rp + 1
)

.

This proves the first part of the assertion.
Next, we prove the uniqueness of the solution in (0, 1) of Lk(r) = 0. In fact, note that

Lk(0) = 2 > 0, Lk(1) = −4 < 0, and

L′
k(r) = −prp−1

(

2− rp(k−2)+m
)

− rp(k−1)+m−1Q(rp),

where Q(x) = 5(p(k+1)+m)x2−2(pk+m)x+pk+m. It follows that Q(x) > 0, because
the discriminant of the function Q is less than 0. This gives that L′

k(r) < 0 and hence,
Lk(r) = 0 has a unique root τk in (0, 1).

Finally, we verify the sharpness of the upper bound τk for the Bohr radius. We consider
the function f(z) = h(z) + λh(z), |λ| = 1, where

h(z) = zpk+m

(

a− zp

1− azp

)

, a ∈ (0, 1).

For this function, we obtain that

M1
pk+m(h, r) +M1

pk+m(g, r) = 2rpk+m

[

a +
(1− a2)rp

1− rp

]

which equals 1 for r = τk and a =
1−τ

p

k

2τp
k

. This completes the proof of Theorem 4 �

5.3. Proof of Theorem 5. Let h ∈ Bpk+m. Then (5.2) holds, that is,

(5.6) Mpk+m(h, r) ≤ rpk+m

[

|A0|+
rp

1− rp
+

|A0|2
1 + |A0|

]

≤ rpk+m

[

3

2
+

rp

1− rp

]

,

where A0 = apk+m. The second inequality holds because the function T defined by

T (x) = x+
x2

1 + x

is a monotonically increasing function of x ∈ [0, 1] so that T (x) ≤ T (1) = 3/2.
Similarly, with B0 = bpk+m, we have

(5.7) Mpk+m(g, r) ≤ rpk+m

[

|B0|+
rp

1− rp
+

|B0|2
1 + |B0|

]

≤ rpk+m

[

3

2
+

rp

1− rp

]

.

where |B0| ∈ [0, 1].
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Combining (5.6) and (5.7) leads to

Mpk+m(h, r) +Mpk+m(g, r) ≤ rpk+m

(

3 +
2rp

1− rp

)

,(5.8)

if and only if wk(r) ≥ 0, where

wk(r) = (1− rp)− rpk+m (3− rp) .

This proves the first part of the assertion of the theorem.
Next, to prove the uniqueness of the solution in (0, 1) of wk(r) = 0, it is sufficient to

observe that wk(0) = 1 > 0, wk(1) = −2 < 0, and

w′
k(r) = −prp−1

(

1− rpk+m
)

− (pk +m)rpk+m−1 (3− rp) < 0.

Finally, it is easy to verify that the extremal function has the form f(z) = h(z)+λh(z),
where h(z) = zpk+m and |λ| = 1. This completes the proof of Theorem 5. �

5.4. Proof of Theorem 6. The proof is essentially similar to the proof of Theorem 5. At
first, from (5.8) and the assumption that |A0| = |B0| = a, it is obvious that the required
inequality (2.10) is true if

(5.9) 2rpk+m

(

a +
rp

1− rp
+

a2

1 + a

)

= 2rpk+m

[

a + 2a2 + rp (1− 2a2)

(1 + a) (1− rp)

]

≤ 1,

which holds if and only if Vk,a(r) ≥ 0, where

Vk,a(r) := (1 + a) (1− rp)− 2rpk+m
[

2a2 + a+ rp(1− 2a2)
]

.

This proves the first part of the assertion of the theorem.
Next, we can prove the uniqueness of the solution of Vk,a(r) = 0 in (0, 1). It is obvious

that Vk,a(0) = 1 + a > 0 and Vk,a(1) = −2(1 + a) < 0. Furthermore,

V ′
k,a(r) = −prp−1

[

1 + a + 2
(

1− 2a2
)

rpk+m
]

− 2rpk+m−1(pk +m)
[

2a2 + a+
(

1− 2a2
)

rp
]

and it is easy to obtain that V ′
k,a(r) < 0 and thus, Vk,a(r) = 0 has the unique root

ςk = ςk(a) in the interval (0, 1).
Finally, we verify the sharpness of the upper bound ςk for the Bohr radius. Consider

f(z) = h(z) + λh(z), where

h(z) = zpk+m

(

a− zp

1− azp

)

, a ∈ [0, 1],

|λ| = 1 and a ∈ [0, 1] is fixed. In this case, we get for the left hand side of (2.10) (for
simplicity call it as W (r) ) takes the form

W (r) = 2rpk+m

[

a+
(1− a2)rp

1− rp

]

+ 2

(

1

1 + a
+

rp

1− rp

)

a2rpk+m

= 2rpk+m

[

a+ 2a2 + rp (1− 2a2)

(1 + a) (1− rp)

]

.

Comparison of this expression with the right hand side of the equation in formula (5.9)
delivers the asserted sharpness. The proof of Theorem 6 is complete. �
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