
HAL Id: hal-02058765
https://hal.inria.fr/hal-02058765

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic structuring of organic shapes from a single
drawing

Even Entem, Amal Dev Parakkat, Loïc Barthe, Ramanathan
Muthuganapathy, Marie-Paule Cani

To cite this version:
Even Entem, Amal Dev Parakkat, Loïc Barthe, Ramanathan Muthuganapathy, Marie-Paule Cani.
Automatic structuring of organic shapes from a single drawing. Computers and Graphics, Elsevier,
In press. �hal-02058765�

https://hal.inria.fr/hal-02058765
https://hal.archives-ouvertes.fr


Automatic structuring of organic shapes from a single drawing

Even Entema,, Amal Dev Parakkatb,d, Loı̈c Barthec, Ramanathan Muthuganapathyb, Marie-Paule Canid
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1. Introduction

Contour drawings are commonly used for shape depiction.
They are both easy to create and easy to interpret for a human
and thus it makes them a convenient and expressive solution
for visual communication. They are found in children’s books,
advertisements, technical books, and more. In contrast, these
drawings are difficult for a computer to interpret. They usu-
ally depict silhouette curves and internal contours as well as
expressive strokes, and they may represent fully visible, self-
occluding, or locally hidden regions.

Many contour drawings are directly authored in vector graph-
ics applications or are easily converted to a compatible repre-
sentation using vectorization tools. Automatically decompos-
ing them into distinct and simple structural parts, layered in
depth (as in Figure 1 (b)), permits users to edit and manip-
ulate the drawings intuitively by rescaling, moving, rotating,
copying, and pasting parts without the need for intricate man-
ual modifications and corrections which would otherwise be re-
quired for such operations.

In this paper, we present an automated geometric method
for extracting apparent structure and depth layers from clean
contour line-drawings. We assume that the input drawing is
intended to represent an organic shape, i.e., any free-form 3D
solid with smooth connections between its 3D structural parts.
The extracted depth-ordered structure is similar to the collec-
tion of blobs that artists sometimes use to temporarily define
the construction lines and volumes of the shape they want to
depict (see results of a web image search with the terms ”tuto-
rial drawing construction animals”).We record additional infor-
mation, namely, where these volumes blend together and where
contours should be erased. This information can then be used
for both current and nearby views editing to achieve new poses
such as in Figure 1 (c). Although view-dependency may prevent
the structure from being complete relative to the actual structure
of the 3D depicted shape, we claim that it is still a useful ref-
erence for editing the current drawing to depict nearby postures
or viewpoints.

The input drawing may be composed of silhouette curves as
well as different categories of internal and external curves. They
include internal open contours connected to silhouette curves,
e.g., the contours of the feather groups in Figure 1 (a). Regions
in the drawing that are demarcated by silhouette curves may
also include a number of internal regions depicting parts, pos-
sibly lying on top of one another, such as the eye of the swan in
Figure 1. Highly ambiguous curves, such as disconnected inter-
nal curves and connected external open curves, are considered
in our work as decorative curves. We also detect and discard

internal elements that fail to define their own silhouettes (see
Section 3.2).

Our three contributions towards solving structuring and lay-
ering problems for drawings are as follows:

• We describe a simple and efficient method for the aesthetic
closing of part contours. This method provides a consis-
tent solution when disconnected endpoints are not explic-
itly defined in the input drawing (Section 4).

• We introduce the radial variation metric (RVM), a novel
part-aware metric for complex 2D drawings, inspired by
the volumetric shape image used for shape segmentation
of 3D models [1]. Its variation along the medial axis of
parts in a drawing enables the identification of salient con-
nections between parts (Section 5).

• We describe a recursive algorithm enabling the successive
identification of parts in a complex sketch and their assign-
ment to depth-layers (Section 6). The key insight lies in
processing the possible junction zones between the identi-
fied parts in a specific order based on the types of contours
involved. This enables us to handle cases of multiple con-
nected internal contours forming a tree-like structure, as
can be observed for the swan wing in Figure 1.

The structure and layering information we obtain can be used to
represent and edit the input sketch in current or nearby views.
We also demonstrate the automatic conversion of the sketch into
a Vector Graphics Complex (VGC), a structure that eases the
computational and manual editing of vector drawings, and that
readily allows for manipulation, editing, and animation (Sec-
tion 7).

In Section 8, we discusses two of the possible applications of
our system, namely the creation of cardboard articulated pup-
pets and of 3D models from a sketch.

2. Related work

Recovering the structural parts of 3D objects in 2D vector
contour drawings is a long standing and complex problem. This
is due to the lack of information required for the unambiguous
and automated shape understanding of most drawings. For in-
stance, the understanding of the main features in a drawing is
often based on contextualized interpretations.

Given that a drawing is only composed of lines, several ap-
proaches have been proposed to identify which visual mech-
anisms are used to help interpret the drawn lines in terms of
self-consistent shapes and contours [2].
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(a) (b) (c)

Fig. 1. An illustration of the steps of our automatic structuring and layering system. (a) The input drawing. (b) Structure analysis and part-completion
estimate the constituent parts and their layering. The arrows represent the partial depth ordering (“over” relation). (c) Manipulation of the depth ordering
as desired (top), followed by the union of these elements composed with the original internal contours to produce a new drawing (bottom).

Several methods address specific aspects of this complex pro-
cess and techniques have been developed to evaluate them on
well-defined data sets. Alternatively, more practical approaches
aim at providing actionable interpretation methods by leverag-
ing knowledge about particular object classes and relying on
Gestalt principles.

One such Gestalt principle, the principle of closure – how
our visual system tends to perceive the missing parts of curves
or contours – has been used by algorithms to complete hidden
and subjective contours [3, 4, 5]. Many solutions rely on plausi-
ble, visually appealing curves such as Minimum Energy Curves
(MEC) [6] that maximize the curve smoothness, and Minimum
Variation Curves (MVC) [7] that generate fair solutions. Our
technique uses a variation of the latter with the aim of efficiently
generating aesthetic curves.

Our approach is also inspired by the fact that the human
visual system tends to segment a complex shape into simpler
parts. Shape segmentation problems have been tackled for a
very long time. Pioneering work relied on the branches of
the skeletal representation of 2D shapes for inferring segmen-
tation [8]. Observing that the quality of the correspondence
between branches and depicted shape parts drops as the com-
plexity of the object rises, subsequent work rather made use of
maxima of negative curvature on the contour to identify part
boundaries and focused on trying to disambiguate pairing be-
tween such boundary elements [9, 10]. Shape segmentation
then became a classical problem for both 2D and 3D shapes.
The surveys by Yang et al. [11] and Shamir [12] present a de-
tailed study of these methods Fully accepted general solutions
do not yet exist, and segmentation remains an area of active
research even for the 2D case [13, 14, 15]. In parallel, interac-
tive sketch segmentation and/or completion methods based on
human input were proposed to fill in drawings [16], to select
layers for shape manipulation [17], to segment sketchy draw-
ings [18] or to simplify them [19, 20].

In this work, we build on, or draw inspiration from, a number
of the processing steps introduced for 2D [21] and 3D [1] shape
segmentation. However, our goal is to automatically segment
complex sketches with not only contours but with internal sil-
houettes as well. Indeed, internal silhouettes are great percep-
tual conveyors of shape, as shown by their extensive use for ex-

pressive depictions of 3D models and high-reliefs [22, 23, 24].
Therefore, taking them into account is essential for being able
to segment a larger variety of drawings.

This new goal brings us to prior work in the area of sketch-
based modeling, where a number of methods relied on the anal-
ysis of complex sketches to infer a 3D shape or a 2.5D high re-
lief from a single sketch, e.g., [25, 26, 27, 28]. Most methods in
the area built on a priori knowledge (or contextual information)
in order to resolve ambiguities - such as requiring exact sym-
metric shapes [29], being restricted to garments [30] or to side
views of animals [31] or requesting 3D information such as a
3D skeleton from the user [32]. Others methods obtained great
results by relying on interactive user annotations for helping to
infer high-reliefs from photos or drawings [33, 34, 35, 28].

Closer to our goal, interpreting drawings of general organic
shapes (ie. smooth 3D solids) depicting all visible silhou-
ettes including cusps was tackled by Karpenko’s pioneering
work [25] in the context of 3D modeling from a sketch. To
this end, drawn lines were represented as networks of oriented
curves, enabling the authors to identify holes and to propose
a reconstruction method for hidden silhouettes indicated by T-
junctions. While we build on this work, we chose not to ask
the user for the orientation of contours, thus interpreting a two-
circle drawing of a torus as two superposed spheres. We fo-
cus instead on extending the handling of internal curves beyond
cusps, enabling us to handle more complex suggestive contours
as well as extra decorative elements.

In summary, we provide the first fully automatic method able
to extract structural parts from cartoon drawings of organic
shapes. We provide in Section 7 a detailed comparison between
our results and those of previous work, by re-using a number of
their examples.

Finally, we note that our method outputs a layered struc-
ture of parts locally ordered in depth, so as to ease the sub-
sequent editing of the drawing. Different structures and repre-
sentations have been developed to handle partial depth order-
ings [36, 37, 38]. In this work we output results in the VGC
format [38], and we choose to define a self-consistent global
depth ordering of the shape parts. The extracted structure is
view-dependent (there is no structure inferred for parts that are
completely occluded, for instance), and the rule that treats in-
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ternal silhouettes as distinct cases may lead to occasional sur-
prises. For example, the pupil of the cat’s eye in Figure 2 is
in fact a hole inside the eye, and thus its correct manipulation
would require an intersection operator with the eye region to
not protrude out of it.

3. Overview

Our method decomposes an input drawing into a set of ‘struc-
tural parts’, layered in depth, and computes the location of
hinges enabling the pose and the animation of the drawn model.
The decomposition is based on connected internal silhouettes
and inner closed contours in the drawings, which provide ex-
plicit indicators of part layering; the resulting parts are intended
to be meaningful for artists as shape-defining-volume silhou-
ettes, and can be used for editing and posing in nearby views.

This section introduces the terminology we use throughout
the paper, defines the assumptions we make on the input draw-
ing, and presents the main features of our algorithm.

3.1. Terminology and assumptions

The input of our method is a vector line-drawing D defined
in the (x, y) plane as a set C of parametric curves that may only
intersect at their endpoints. The drawing may be either directly
created in this form or obtained from a rasterized drawing using
a vectorization algorithm [39] and then cutting curves at all in-
tersections. Parametric curves are also uniformely sampled as
polylines for some of the further processing. In the following,
we therefore refer to points along the curves in C as samples.

As in Smoothsketch [25], our algorithm is designed to han-
dle contour-drawings of smooth, closed shapes, which we refer
to as organic shapes. However, to be able to handle a larger
category of drawings, we also allow them to include specific
categories of decorative curves such as those often used in car-
toon drawing.

Therefore, our algorithm includes a mechanism for the auto-
matic detection of contour curves within C. Since we are not
asking for any additional information (such as contour orienta-
tions) from the user, we assume that the depicted shapes have
no surface-to-surface contact, have genus 0, and are not self-
overlapping (e.g., no animal’s tail passing under and behind the
body and forming a new background region).

We use the following terminology throughout the paper (see
Figure 2):

Contour: A contour is a curve in C that corresponds to a sil-
houette of the depicted 3D shape, i.e. to points where the
normal to the shape is orthogonal to the viewpoint. The
contour graph is the planar graph structure formed by the
contours and their intersections.

Region: A regionR〉 is a 2D connected component ofD delim-
ited by a counterclockwise face cycle in the contour graph.

Part: Structural parts (or parts) are the 2D counterparts of the
structural elements of the 3D shape represented by the
drawing, as depicted in Figure 1(b). Our goal is to extract
them.

a) b)

Fig. 2. Stroke classification. Red curves are suggestive contours; green
curves are hair; blue and purple curves are part of non-hair decorative
elements. The remaining contours, in black, are part of the external sil-
houettes of shape parts.

Suggestive contour: A suggestive contour is an internal curve
within a region R〉 of the drawing, connected with tangent
continuity to its external contour (and thus forming a T-
junction). Such curves are used in drawings to partially
depict the visible contour of a structural part.

Note that this definition is slightly different from the one
found in the literature, since our term is in between the
concepts of suggestive contours [22] and of cusps [25], to
better match what we observed in typical line drawings.

Decorative elements: These include all curves in D that are
not visible contours of the depicted shape, but can instead
represent ornamental details, 1D elements such as hair, or
strokes used to represent bas-relief carvings. In our case,
a curve is considered as a decorative curve if it falls in any
of the following categories:

• Inner isolated subgraphs that do not contain external
contours when processed as independent input draw-
ings (in purple in Figure 2). Although they might
contain or actually be inner contours, such subgraphs
are highly ambiguous. We leave interpreting and pro-
cessing them for future work.

• Inner trees of curves that are connected to the exter-
nal contour of a region, but without tangent continu-
ity (blue curves in Figure 2)

• Trees of curves located outside of the region they are
connected to (green curves in Figure 2, which we call
hair).

In our method, the decorative curves are identified and ig-
nored in further contour processing, but are kept in the descrip-
tion of the corresponding to-be-segmented part.

3.2. Processing pipeline
Let G be the contour graph, the planar half-edge graph de-

fined by the curves C that constitute the input drawingD. As in
standard planar graph processing, each half-edge corresponds
to a given orientation of a curve. If half-edges are part of a
closed contour, they are considered to lie respectively in the in-
terior and in the exterior of the corresponding face cycle of the
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Fig. 3. Processing pipeline: The input is (a) and the output is (h) with partial depth ordering (here depicted in exploded view). Note that our algorithm
successfully decomposes the petal even in the absence of a suggestive contour (see the top left petal in (h)). This holds because our decomposition relies on
the measurement of salient transition between two different regions and not on the presence of suggestive contours.

graph. In the remainder of this section we use both “edge” and
“curve” to denote the edges of G, depending on context.

The goal of our method is to process G in order to extract
and progressively refine the set P of 2D structural parts of D,
as well as the associated partial depth ordering POP expressing
their relative depths. More precisely, P is defined as: P = {Pi =

(ei,Si,Oi)}, where ei is the external silhouette contour (as a list
of edges) of Pi and where Si (respectively Oi) is the subgraph
of G corresponding to the suggestive contours (respectively, the
decorative elements) located within Pi, or attached to it.

Our processing pipeline, detailed below, is depicted in Fig-
ure 3. Starting with an initial set of silhouette-complete parts
extracted at the initialization stage, our algorithm recursively
decomposes each part into simpler parts and updates POP ac-
cordingly. This is done until none of the parts in P has any
suggestive contour left (for all i, Si is empty).

Initialization:
We aim at initializing P to a first set of structural parts, such

as the heart of the flower versus the part with all its petals in
Figure 3 or the head versus the ears and the nose of the head
in Figure 2 (a), and to set POP to the corresponding partial
depth ordering. This involves completing the contours of par-
tially hidden parts, such as the ears. Although this decompo-
sition and figure completion problem was already solved in the
past [5], this was for drawings only depicting silhouette outlines
of occluded surfaces. To handle more complex cases of cartoon
drawings with decorative lines such as the whiskers in Figure 2
(b), we extend the original method into a four-stage process:

First, if G contains any vertex v of valence 4 or more (such
as vertices where the whiskers of the cat cross the head’s con-
tour in Figure 2 (b)), we convert G into a non-planar graph by
dissociating the curves at v, enabling us to further process the
whiskers as decorative elements attached to the nose. This is
done based on the Gestalt rule of continuity, as follows: For
each vertex v of valence 4 or more with adjacent edges in G
that correspond to pairs of tangent-continuous curves, we join
each pair of curves at v into a single curve. This disconnects the
pairs of curves from each other, enabling them to be attached

to different structural parts. A constraint is also set to prevent
more than one pair of merged curves from being interpreted as
a contour curve in further processing, since this would violate
our hypotheses of organic shape depiction (e.g., two overlap-
ping circles do not correspond to any valid contour of organic
shape, and are thus interpreted as a single 2D region crossed by
a closed decorative curve). After this stage, any connected com-
ponent of G that still contains a vertex of valence larger than 3
is considered in its whole as a decorative element, since a set
of curves that connect without any tangent continuity cannot
include silhouettes of smooth organic shapes.

Then, we process each remaining connected component CC j

of G to separate contour curves from curves corresponding to
the associated suggestive silhouettes or decorative elements.

Since the input drawing is supposed to contain no self-
overlapping part, this can be done by simply moving every edge
whose half-edges both belong to the same face cycle (ie. lie in
the same 2D region) from CC j to another subgraph A j, which
gathers candidate edges for either Si or Oi. Note that this oper-
ation may split CC j into smaller connected components, since
the edges moved to A j may include bridges between differ-
ent subgraphs. In this case, CC j and the corresponding A j are
split into smaller subgraphs. We decide to which sub-connected
component the bridge sub-graph should be associated to by
looking at its tangent continuity with the neighboring curves:
We insert the bridge into the Ak set associated with the sub-
graph CCk of CC j to which it has tangent continuity at one of its
endpoints (e.g., a suggestive curve partially hidden by the con-
tour of an inner part). If there is tangent continuity at both ends,
the decision is taken at random. If there is none, the bridge is
considered as a decoration and is attached to the subgraph cor-
responding to the contour of the region where it lies.

At this stage, each CC j should only contain contour edges
(for instance, the drawing in Figure 2 (a) is split into two con-
nected components, namely (1) the nose and (2) the head plus
ears, where only black curves remain). This enables us to use
the existing algorithm in [5] to split then into structural parts,
by using T-junctions to identify partially hidden parts (such as
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the ears) and smoothly complete their contours. Failure cases
of this algorithm and other limitations will be discussed in Sec-
tion 7.

In contrast with previous work, we use our own efficient so-
lution, presented in Section 4, to compute closure curves. All
resulting parts Pi are stored in P together with their contour
edges ei. The corresponding partial depth ordering informa-
tion is added to POP. We also add temporary depth relations
with the remaining connected components, depending on the
number and order of intersections with each other component
to reach the background of the drawing with a line (parts with
the same number of intersections being considered to have the
same depth level).

In a final stage, the set Si of suggestive contours of each
part Pi is extracted from the set A j associated to its former
connected component CC j, by selecting curves with smooth T-
junctions with contours ei and that lie within Pi. The other
curves in A j connected to ei are classified as decorative ele-
ments and added to Oi. Lastly, every curve in other Ak sets
that were initially crossing any of the current contour curves
are stored in the set Ok of the part in which it is located since
they no longer can be contours.

The set of parts P is now ready for further decomposition.
Recursive part decomposition:
The core of the algorithm is a procedure that decomposes P

into parts that are themselves decomposed recursively if possi-
ble.

This enables us to process complex suggestive contours indi-
cating embedded parts, such as the wing of the swan in Figure 1:
The full wing is extracted first and is then recursively split into
partially overlapping parts. The recursive loop proceeds as fol-
lows:

For each part P in P, we identify the salient potential junc-
tion region zones between parts, and iterate from best-to-worst
until a valid pair (Pa, Pb) of parts is identified. Missing con-
tours are then inferred for Pa and Pb (see Figure 3 (g)) and the
depth ordering relation between them is added to PO. Pa and
Pb are added to the list of parts P, enabling us to recursively
apply this process until no further decomposition is possible
(Figure 3 (h)).

This recursive decomposition method raises three challenges,
leading to our three key technical contributions:

(1) The description of a robust method for completing the con-
tours of the extracted parts in a perceptually valid way.

(2) The design of an effective metric for identifying the re-
gions of possible junction between the parts of a 2D shape.
In contrast with previous work, the 2D shapes we pro-
cess may include suggestive contours, which are not con-
strained to come in even numbers, or to be short cusps.

(3) The definition of an order in which to process the identified
alternative solutions for segmentation into parts.

This order is important for extracting consistent parts as it
enables us to reuse the same algorithm in a recursive fashion.

Our aesthetic and efficient contour completion is presented in
Section 4 and we discuss our new metric for identifying junc-
tions in Section 5. Section 6 details our recursive structuring
algorithm. It makes use of our new metric and completion
method, with an emphasis on the priority order we set for pro-
cessing possible junctions.

4. Aesthetic and efficient contour completion

In this section, we present the completion method we use
for closing contours of both partially occluded structural parts
(initialization step) and of parts extracted during recursive part
decomposition. Although not proved to be the best possible
perceptual completion method, our solution is simple, efficient,
and produces adequate results in practice.

4.1. Scale-Invariant MVC
We first note that perceptually pleasing contour completion is

a different problem than completing illusory contours [5]. We
seek to find aesthetic curves that are appropriate for the editing
and subsequent animation of the drawing, during which hidden
or omitted contour segments may become visible. In the litera-
ture, both curves minimizing the total curvature (i.e. “smooth”
curves, MEC’s) and curves minimizing the total variation of
curvature (i.e., “fair” curves, MVC’s) have been proposed as
possible solutions to the problem. We choose to use MVC’s be-
cause they tend to form more circular arcs; these are particularly
well suited to organic shapes.

Let A and B be the two endpoints of the open contour to be
connected, along with corresponding unit tangent directions TA

and TB as shown in Figure 4 (a). Our goal is to generate a
perceptually plausible curve between A and B that best matches
an inferred silhouette for the resulting part.

We define the curve connecting these two input points as
follows. Let BAB be a Bézier cubic curve connecting A and
B, defined by the four control points (A, P1, P2, B), and whose
tangents are aligned along the unit vectors TA and TB, i.e.,
P1 = A+c1TA, and P2 = B+c2TB. We optimize the free param-
eters c1 and c2 in order to minimize a “fairness energy” i.e. a
variation of the SIMVC energy originally introduced by More-
ton [7]. Let C(s) be a parametric 2D curve with curvature κ(s).
Then the SIMVC energy [7] is defined as:

ESIMVC−Moreton =

(∫
ds

)3 ∫ (
dκ(s)

ds

)2

ds (1)

where
(∫

ds
)3

is the product of a regularization factor((∫
ds

)
/‖B − A‖

)3
and a scale-invariance factor ‖B − A‖3.

This regularization factor relies on the cube of the scale-
relative arc length of the curve. We increase the regularization
factor’s exponent from 3 to 5 in order to reward slightly shorter
curves. This avoids cases where closure curves would slightly
jut out from the desired boundaries. We thus propose to mini-
mize the following energy:

ESIMVC =

(∫
ds

)5

‖B − A‖2

∫ (
dκ(s)

ds

)2

ds (2)
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As in Equation 1 the first term makes the curves scale-
invariant. The use of Bézier curves guarantees that the curve
lies in the convex hull of its control points and is therefore well
suited to interactive sampling and intersection queries. The
choice to optimize its parameters with the SIMVC functional
produces a scale-invariant result.

In practice, we use the standard Gauss-Kronrod quadrature
[40] to numerically integrate the different integral terms. Pow-
ell’s method [41] is used for minimizing ESIMVC.

4.2. Efficient implementation

Given that the completion curves we compute are invariant to
scaling, translation and rotation, there remain only two configu-
ration parameters, namely θ and ϕ. They are the oriented angles
formed by the two tangents with respect to a line between the
two points to be connected, as shown in Figure 4 (a).

-π π

π

0

0 -π π

π

0

0

100

SIMVC MEC

105

θθ

φ φ

(a) (b)

θ φ

A B

TA TB

Fig. 4. To optimize the computation of our SIMVC curves, we precompute
a table of the energies and associated parameters that the curve can take
as a function of the two angles θ and ϕ defined in (a). We illustrate the
sampled function SIMVC energy values and compare them with the MEC
energy that minimized total curvature.

The SIMVC energy of our curve defined as a function of
these two parameters is continuous and smooth in the sub-space
of non self-intersecting curves, as shown in Figure 4 (b). This
enables us to precompute a table of the different SIMVC Bézier
cubic curves, with their SIMVC energy and parameters c1 and
c2, as a function of θ and ϕ. Parameters can then be interpo-
lated, with either bilinear or bicubic interpolation, to provide
both an approximated curve and good initial parameters for the
final curve computation, leading to an important speedup of the
gradient descent with two variables.

In practice, we use Bézier curves for easily detecting invalid
contours that occurs when the closures for partially occluded
or partially occluding parts protrude outside the union of the
related parts. To avoid unintended intersections we rotate tan-
gents, at the points to be connected, inwards and by a small
angle, keeping the misalignment of tangents almost impercep-
tible. During our experiments, we chose a rotation of 2 degrees.

5. Extracting Regions of Possible Junction within a Part

While previous work already addressed the segmentation of
2D shapes into perceptually salient parts, these methods do not
tackle the segmentation of shapes carrying extra structural in-
formation in the form of suggestive contours. This is the prob-
lem we are addressing here.

5.1. Regions of possible junction

In the remainder of this paper, we define a region of possi-
ble junction as a region where the drawing of a part exhibits a
perceptual change, enabling it to be divided into two parts in a
perceptually consistent way.

We define junction boundaries as being the portions of the
part contours that delimit such a junction. These portions can
either be a point (e.g., the open end of a suggestive contour) or a
contour segment, as will be the case when the exact point where
the segmentation should occur is unclear.

Among the common approaches to 2D shape segmentation
that we review in Section 2, computing junction boundaries as
the segments of the contour of maximal negative curvature can-
not capture approximate regions such as those indicated by the
orange and blue junction boundary in Figure 5 (a), since the
blue one is not a curvature maximum and thus would not be de-
tected. Similarly, segmentation methods that directly make use
of the branches of a skeletal representation such as the Medial-
Axis Transform to identify parts, also fail in a number of cases,
as shown in Figure 5 (b,c). Fortunately, such correspondence
between a Medial-Axis branch and a structural part remains
generally true for foreground structural parts delimited by sug-
gestive contours, such as the middle part in Figure 5 (b). The
solution we describe below therefore builds on skeletal repre-
sentations, while being based on a new metric.

Fig. 5. (a) A maximal negative curvature (in orange) suggests the pres-
ence of a junction boundary on the contour but its counter-part boundary
(in blue) does not exhibit any maximum, which avoids the detection of a
boundary. (b) S-skeleton of a part (in blue), i.e. Medial-Axis considering
internal silhouettes: the lower structural part is not captured, while the
middle part at the top is. (c) Processed Medial-Axis of the external contour
of (b), where no branch is associated with the top structural part.

5.2. Radial Variation Metric

MB

rA
1

rA
2

rA
3

SSIA

rB
1

rB
2

rB
3

SSIB

MA

Fig. 6. Example of SSI for points MA (resp. MB) constructed by measuring
the local reaches rk

A (resp. rk
B) in the kth direction of a uniformly sampled

set of m directions (here m = 3). Some discontinuities of reach are present
and shown here as green arrows.

Our new parts-aware metric is inspired by a similar metric [1]
developed for 3D shape segmentation. In particular, it makes
use of a Surfacic Shape Image, a modified 2D version of the
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Volumetric Shape Image (VSI) introduced in [1]. However, we
tailor this more specifically to our problem, as detailed below.

We define the Surfacic Shape Image (SSI) as a signature of
silhouette visibility from a given point of view inside a part of
the input drawing (see Figure 6). A signature SSIi is defined as
a set of m distances lki between closest points pk

0,i and pk
1,i to the

point i in the kth direction of a pre-defined uniformly sampled
set of m directions. From 60 to 100 directions per set are used
for the different examples in this paper. Both external contours
and internal contours are considered at this step, while decora-
tive curves are discarded.

Similar to the 3D case, the local change of SSI (differential
of SSI) between two neighboring points can be used to detect a
region of possible junction between two structural shape parts.
We propose to compute this differential between points A and
B as follows:

∆(SSI)A,B =
1∑

k wk,A,B

m∑
k=1

wk,A,B

∣∣∣lkA − lkB
∣∣∣

‖B − A‖
(3)

where

lki =
∥∥∥pk

1,i − pk
0,i

∥∥∥ (4)

Discontinuities near open ends of suggestive contours as de-
picted in Figure 6 generate outliers. To tackle this problem, we
fit a Gaussian to the distribution of such values (as in [1]) using
the weights wk defined as follows:

wk,A,B =

e−(dk,A,B−u)2/(2σ2), if dk,A,B < u + 2σ
0, if dk,A,B >= u + 2σ

(5)

where dk,A,B =
∣∣∣lkA − lkB

∣∣∣ / ‖B − A‖, u is the mean of the dk,A,B’s,
and σ the standard deviation.

Note that in contrast to [1],
∣∣∣lkA − lkB

∣∣∣ is not squared in Equa-
tion (3), in order to make the equation more linear. In addition,
we regularize this term by dividing it by the distance (‖B − A‖)
between neighboring points of view. This allows for similar re-
sults whatever the sampling resolution at which this measure is
used. Thus ∆(SSI) tends to be scale-invariant for high resolu-
tions when there is no discontinuity of visibility.

(a) (b)

Fig. 7. (a) Computed dSSI between vertices of each edge of the S-skeleton of
a part, and represented for each skeleton edge as the size of an orthogonal
segment passing through the center of this edge (values are squared for
visibility). (b) regions of possible junction (in grey).

Let us now define a part-aware metric built on the SSI. Note
that we cannot reuse the method introduced by Liu et al. [1],
where the distance used to segment a 3D mesh was defined as
the integral of the VSI distance along a geodesic path between
vertices. Indeed, in our case, there is no 3D surface to support

and define the actual shortest path between two facing vertices
on opposite sides of a shape. Therefore, our approach iden-
tifies salient parts by defining a 2D Part-Aware metric along
the curves of a specific skeleton, called the salient skeleton (S-
skeleton), as described below.

We initialize the S-skeleton of a shape part as the medial axis
of the region bounded by the external contour and the sugges-
tive contours of this part, as shown in Figure 5 (b). Decorative
curves are discarded. As usual, it is defined as the locus of the
disks of a Medial-Axis Transform (MAT ) which are the maxi-
mal disks that do not intersect the set of contours (see Figure 3).
For the S-skeleton to only reflect the main shape features, we
proceed in a fashion similar to the Scale-Axis Transform [21].
The goal is to locally remove small disks by considering those
that can be covered by others in a version of the MAT with
larger radii. The final result can be realized by computing the
MAT of the grown shape defined by the union of scaled up disks
from the initial MAT , and then scaling down the radii. How-
ever for reasons of computational efficiency and simplicity, we
choose to iteratively remove disks from branch extremities in
the grown MAT that are covered by others and then scale down
the radii of the remaining disks (in practise, we use a scaling
factor of 1.3). This avoids several computations leading to sim-
ilar results. Additionally, the associated contour points of these
removed disks are given to the nearest remaining neighboring
disk in order to keep a mapping between contours and the S-
skeleton.

Given that the drawing represents the silhouettes of a volu-
metric, organic shape, the S-skeleton is a good candidate for
extracting structural information about salient parts. We should
however take care of correctly assigning curves in the drawing
to the different branches of the S-skeleton. To achieve this, we
represent the curves in the drawing, as well as the S-skeleton
itself, using half-edges. This enables us to assign the dupli-
cate vertices on two sides of a suggestive contour to different
branches of the S-skeleton (see Figure 7).

Our new 2D part-aware metric called radial variation met-
ric (dSSI) is defined over the S-skeleton as the integral of the
SSI differential (Equation (3)) along the shortest path joining
two vertices of the S-skeleton. Let MA and MB be two vertices
of the S-skeleton and E be the set of edges of the shortest path
between them. dSSI is then defined as:

dSSI(MA,MB) =
∑
e∈E

∆(SSI)e (6)

The last point is the sampling rate used along the S-skeleton.
We note that the contribution of the salient discontinuity ∆(SSI)
in region of possible junctions is related to the number of rays
included in the parallax angle of a discontinuity location seen
from neighbor points. We tried two alternative sampling meth-
ods to correctly measure this contribution along the S-skeleton.
The first uses a uniform spacing, relative to the drawing size
(in practice 0.5% of the drawing’s height) while the second
uses a dynamic spacing relative to local Medial-Axis disk radii
(in practice 0.02 ∗ local radius). While the first method bet-
ter matches perceptual principles, the second one improves the
processing of small details. The results presented in this paper
have been generated using the first method for better readability



8 Preprint / Computers & Graphics (2019)

of figures. We emphasize that even though the measure extends
to the continuous case where there is no discontinuity, the reso-
lution of the SSI sample points should not be higher than the one
of the input polylines so as not to reflect the lack of curvature
of the polylines (otherwise a wave like pattern would emerge).

5.3. Region of possible junction detection

With the S-skeleton S being computed from a medial axis
transform, each edge e ∈ S is associated with two facing por-
tions of the contours, i.e. the segments or point of the contours
that could be generated by drawing discs from this specific edge
of the skeleton. This enables us to use the S-skeleton to define
both regions of possible junction (the regions we are looking
for) and the junction boundaries that delimit them on the con-
tours.

We initialize regions of possible junction as the 2D regions
corresponding to segments of the S-skeleton with dSSI values
over a threshold k (see Figure 7 (b)). Thanks to the scale-
independent nature of the metric, a single threshold value k
is used regardless of the scale of the input drawing (we use
k = 0.45 for all our results). These segments are stored us-
ing lists of edges of the S-skeleton. Since sharp extremities of
structural parts may correspond to large-but-irrelevant dSSI val-
ues, we remove them in a second pass: Starting from S-skeleton
extremities, we iteratively remove edges while their dSSI values
decrease. Increases in dSSI values due to noise can lead to un-
wanted decomposition of pointy ends, but are mostly avoided
by smoothing the dSSI values along the S-skeleton first. Due
to the nature of the SSI, sampling points near the middle of
a radially symmetric transition will yield low dSSI values com-
pared to other transitions as illustrated in Figure 8. However, we
note that the negative curvature cues on both sides are implic-
itly given by the diamond shape formed between the junction
zones (Figure 8 (a)). We merge these regions of possible junc-
tion if the distances dC0 and dC1 between the junctions zones
along contours are both inferior to the distance dM along the
S-skeleton, and inferior to the half of the average radius of the
Medial-Axis disks of the junctions zones.

a

b

dM

dC1

dC0

Fig. 8. (a) A region of possible junction misidentified as two junctions due
to radial symmetricity of the shape at the center of the transition (in near
radial directions to the Medial-Axis). Both are merged before further pro-
cessing. (b) A more common case of region of possible junction with no
merging necessary.

6. Recursive part decomposition

Given the general methods that we have described for closing
contours and for extracting regions of possible junction within
a structural part, we now detail how a given part is decomposed,
i.e., how its regions of possible junction are prioritized, and how
the corresponding parts are extracted and completed.

6.1. Prioritizing regions of possible junction

Decomposing a part not only requires extracting possible
junction regions between parts, but also assigning them a pri-
oritized order. We achieve this via a classification of regions of
possible junction, depending on the type of contour segments
that contributed to this specific part of the S-skeleton.

Fig. 9. Regions of possible junction: (SF,SF) in dark blue, (SB,SB) in cyan,
(C,SF) in green, (C,C) in orange, discarded regions in pink.

Since they are defined by segments of the S-skeleton, each
region of possible junction comes together with a pair of junc-
tion boundaries (the associated parts of the contours, possibly
reduced to a point) found on each side of the skeleton. Regions
of possible junction are classified as follows, based on the na-
ture of this pair of junction boundaries (see Figure 9):

1. Two segments of suggestive contours, that do not be-
long to the same tree of internal silhouettes: The junc-
tion is either classified (SF,SF) and (SB,SB), depending
on whether the suggestive contour’s curves (a set of half
edges) correspond to a front (occluding) or to a back (oc-
cluded) part of the shape. The occluding side is given by
the T-junction properties.

2. A pair formed by an external contour segment and a
suggestive contour segment: We only consider the case
when the suggestive contour side corresponds to the front
of the shape, denoted as (C,SF).

3. Two portions of the external contour: the junction is
classified (C,C).

If a curve segment in a pair spans different types of contours, the
associated region of possible junction is subdivided. Regions
that do not fit into the categories described above (in pink in
Figure 9) are discarded, since they have a bounding contour on
one side and an occluding one on the other, and this case is not
handled by our decomposition.

This classification is used to select the salient parts to be ex-
tracted at each stage of the recursive part decomposition algo-
rithm described in Section 3.2: (SF,SF), (SB,SB), (C,SF) and
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(C,C) regions of possible junction are respectively given high-
est to lowest priority. This enables us to give priority to parts
that are unambiguously in front of their neighbors, such as for
the bottom-right part of the flower in Figure 3, before process-
ing partially occluded parts and those with weaker depth clues.

6.2. Processing complex suggestive contours

4
3

2
1

0 4
3

2
1

0

Fig. 10. Adding relative depth information along a suggestive contour, illus-
trated here for the case of a complex curve forming a tree. As shown here,
the numbering must be made in forward or backward fashion depending
on the root T-junction.

In addition to the sorting order we just defined, parts defined
by (C,SF) junctions need to be given a priority order. This en-
ables us to handle cases where the suggestive contour forms a
tree of branching curves, such as the swan’s wing in Figure 1.

Let us look at the similar shapes on Figure 10: parts with
high label values on the edges need to be extracted first, since
they embed the other ones. This enables us to extract the full
wing, which can then be progressively decomposed into three
consistent parts.

Given that suggestive contours represent internal silhouettes
of volumetric parts of a shape that smoothly blend with the
parent part, they should have a G1 continuous junction to the
silhouette they are attached to (see Figure 10). The side of
this smooth junction indicates which part comes above the rest.
Therefore:

1. If the connection point with the external contour is only
C0, the curve tree is re-classified as decoration.

2. If G1 continuity is detected, we use a traversal of the sug-
gestive contour from the connection point to the open end,
on the side of the G1 continuous curve in order to enumer-
ate and prioritize these half edges for decomposition.

3. During the traversal of the tree, only suggestive contours
that demarcate a part that is on the same side as the oc-
cluder at the root T-junction are allowed. Other contours
are left-out as decorative strokes and are not processed by
our algorithm.

Note that even in the case of complex suggestive contours that
form a tree as in Figure 10, the suggested part is always on the
same side of the curve, given that the organic shape hypothesis
would otherwise be violated.

6.3. Part decomposition method
Decomposing a shape part at a given region of possible junc-

tion always involves generating two contours for closing the
two resulting parts. We use the terms front closure and back
closure to refer to the closure curve that closes the parts lying

at the front and back, respectively, given the depth clues pro-
vided by the suggestive contours. To decompose a part, we first
generate the two closure curves for all the junctions having the
highest priority, using specific algorithms for each type of re-
gion of possible junction, as detailed below. If either of the re-
sulting closure curves intersects the shape contour or if the front
closure curve intersects a decoration curve, the current junction
is discarded. Finally, the junctions that result in most plausible
closure, as defined by the minimal sum of their closure curves’
energy, are selected for the decomposition. The resulting parts
are created and included in the partial depth set P according to
their classification as a front or back closure curve.

Note that the two newly created parts may have overlaps be-
tween their respective closure curves, but this is valid since they
are each assigned a different depth layer. To assign such depth
in the case of (C,C) region of possible junction without a rela-
tive depth cue, e.g., the bottom-right petal of the flower in Fig-
ure 3, we use the convention that the largest shape part should
be in front, which is often the best choice when the resulting
parts are to be animated.

While inferring the closure of a part given two endpoints
and the associated tangent vectors is easy (Section 4), and can
be done for connecting two suggestive contours (SF,SF) and
(SB,SB) regions of possible junction, the connections in the
(C,SF) and (C,C) cases are much more challenging. Indeed,
the best pairs of contour points in the region of possible junc-
tion zone should be computed for the front and back closure
curves. Our methods for solving these two cases are presented
next.

6.4. Contour / Suggestive contour (C,SF) closure

Given that we are in the case where the suggested part is on
top, we compute all the possible closure curves that join the
tip of the suggestive contour to the sample points on the fac-
ing contour segment in order to generate the front closure (Fig-
ure 11 (b)). We also generate all the possible closure curves
joining the contour segment with the T-junction at the base of
the suggestive contour tree (Figure 11 (c)). Keeping only pairs
of closure curves whose tips on the contour are not farther from
each other than the blending radius, we select the most plau-
sible pair of closure curves of minimal energy using the sum
of their SIMVC energies (Equation 2). This enables us to effi-
ciently select the best pair of closure curves among the n2 pos-
sible choices.

For this task we must define an adapted sampling rate to ex-
plore the space of possible closure curves. This is done by first
computing a blending radius defined as the average of the radii
at the two ends of the region of possible junctions along the S-
skeleton. Based on the blending radius, corner segments (part
of the curve where the curvature is larger than the blending ra-
dius) are identified (orange curve segments in Figure 11(a)).
For each corner segment, sampling points are assigned at the
beginning and end of the segment, and two possible tangents
are associated with each curve depending on which of the two
closure curves is being computed (Figure 11 (b) and (c)). Other
contour parts are regularly sampled with a distance between
consecutive samples equal to the half of the blending radius.
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a) b) c) d)

Fig. 11. Part decomposition at a region of possible junction. a) junction boundaries in this case are described by an external contour at the bottom and a red
suggestive contour at the top. The external contour is uniformly sampled into a set of points and their associated pair of tangents. Corner segments (orange)
samples are given two points instead of one to handle proper connection where curvature is the highest. b) all the closure curves corresponding to pairs
of one sample point from the contour and the suggestive contour extremity are computed and their plausibility is evaluated for closing the rightmost part.
Curves that intersect contours are eliminated. c) the same closing procedure is applied to the other region, therefore the suggestive contour’s T-junction is
used instead of its extremity; d) resulting closure curves.

For each such sample point we store the incoming (or outgo-
ing) tangent vectors, with a small tilt outwards (or inwards) in
order to avoid undesired intersection.

Fig. 12. (a) Example of a suggestive contour comparable to a cusp requir-
ing a (C,SF) closure. (b) The front closure unknown end-point is searched
along the blue contour part defined by the identified region of possible
junction. (c) The transition is extended for the back closure. (d) Result
of the decomposition with parts sharing a wide part of contour.

When dealing with suggestive contours that could be con-
sidered as big cusps (Figure 12 (a)), the front closure is pro-
cessed normally (Figure 12 (b)) while for the back closure, we
extend the relevant transition contour (Figure 12 (c)). The tran-
sition contour is extended by following its associated S-skeleton
branch until either an extra branch is encountered, or the facing
contour is a neighbor of the T-junction. This produces the result
exposed in Figure 12 (d).

6.5. Contour / Contour (C,C) closure

We sample the boundaries of the regions of possible junction
in the same way as for the (C,SF) case. The two closure curves’
extremities may be located anywhere on these segments. With
n sample points on both contours, a naive method would lead to
n2 possible curves to generate for each of the parts, and thus to
n4 pairs of closure curves to evaluate. To reduce the complexity
back to n2, we only consider the pairs of closure curves between
a given pair of points.

In this case, we use a variation on the energy for selecting the
most plausible pair of curves. Rather than selecting the short-
est closures, we wish to favor a decomposition with an overlap
that is close to the middle of the region of possible junction.
Doing so ensures that curved parts such as a cat’s tail is reg-
ularly decomposed regardless of the small variations in thick-
ness. Therefore, we use the energy Ê of the two curves to select

a₀ b₀

a₁

b₁

Fig. 13. For (C,C) closures we define a new coefficient for Ē based on the
samples’ positions relative to their respective sampling contours as defined
in Section 6.5.

the best closing pair, defined as:

Ê =

1 +
(1 − a0

0.5∗l0
)2l0 + (1 − a1

0.5∗l1
)2l1

l0 + l1

 (E0
SIMVC + E1

SIMVC)

with li = ai + bi and ai, bi the junction boundary segments
arc lengths shown in Figure 13, E0

SIMVC and E1
SIMVC the energies

of the closure curves.
We also wish to reward the use of corners over a solution with

two circular arcs forming a circle since it has an energy close
to zero. Thus valid closures that use a sample at a corner as an
implicit end point are given priority.

7. 2D decomposition results

We now present our decomposition results and illustrate
some applications in Section 8. Our method, its results and
applications are also presented in the accompanying video.

7.1. Qualitative results
Figures 1, 3, 15, 22, 25 and 26 show a variety of shape de-

composition and layering results that are automatically com-
puted by our method. In Figure 25, we reused drawings from a
recent paper [32], showing that our method achieves the struc-
turing and layering of such drawings without the need of any
extra information, whereas a user-defined 3D skeleton was used
in the original paper. Figures 1 and 15 (top-right) show even
more challenging cases where some of the suggestive contours
form a chain of T-junctions, requiring the labeling method of
Section 6.2 in order to be properly processed. Figure 26 shows
results computed on cat drawings found on the web using a sim-
ple query and vectorized using Adobe Illustrator.



Preprint / Computers & Graphics (2019) 11

Fig. 14. Dog head example, and some editing by manipulating the extracted
parts.

Fig. 15. Results on drawings of a cartoonish man, a tree and a pig. The
two legs of the man are seen from a special view, thus the surface contact
is classified as a decorative element. Warmer colors are in the foreground.

7.2. Quantitative results

Computational times range from a few seconds for the dog
head of Figure 14, which includes a number of decorative
curves and only three overlapping, structural regions, to a few
minutes for complex drawings such as the swan of Figure 1.
See Table 1. The flower is the one of Figure 3, which shows all
the decomposition steps plus the final results, and the cat is the
one on Figure 22.

Figure Dog Flower Swan Cat
T1 (in seconds) 19.1 26.4 708.1 520.1
T2 (in seconds) 7.2 9.8 134.0 85.0

Table 1. Computational times without (T1) versus with (T2) the optimiza-
tion of contour completion described in Section 4.2. It can be seen that our
optimization method enables us to reduce computational time by a factor
of 3 to 6.

This table enables us to emphasizes the benefits of the op-
timization method we proposed for contour completion (Sec-
tion 4.2), enabling to reduce computational time by a factor 5
or 6 in challenging cases such as the swan and the cat.

Validation

Segmentation in depth ordered structural parts is a fundamen-
tal first step for many further applications, from editing vector
drawings with robust completion of partially hidden parts, to
2D animation and sketch-based 3D modeling.

We first tested our method with two applications in mind: the
conversion of the input drawing into a Vector Graphics Com-
plex [38] that then enables easy and meaningful 2D editing, and
2D vector animation. Figure 14 shows an example of meaning-
ful editing of a drawing. Posing and animation results are
shown respectively in Figure 1 and in the supplemental video.
The decomposition of the wing of the swan may not fit the per-
ceived structure for every viewer, but wings are not known to
be easily animatable in 2D.

8. Applications

In addition of helping in animating static sketches, our
method can be used in a variety of applications. In this section,
we present two of them: cardboard puppetery and part-based
3D modeling.

8.1. Cardboard puppetry
Puppetry is an art-form that has existed for a very long time.

Given a set of shapes, characters can be crafted by taking the
range of possible motion into account [42]. Puppet manipu-
lation can then either be made by manually posing puppets or
by using rod-like structures as is done in traditional shadow-
puppetry. However this type of puppetry requires the input parts
to be simple, non-intersecting shapes. If the input itself is a
complicated single sketch, then it has to be converted into small
pieces to be handled by such approaches.

In our application, puppets are made of articulated parts that
can be posed by a user. Once the input sketch is automatically
divided into parts using our method, it can be appropriately con-
nected and manipulated. However, though our technique pro-
vides structuring and layering information of the decomposed
parts, it must be extended to provide the appropriate hinge lo-
cations in order to generate a fully connected puppet.

We propose to connect two overlapping structures by placing
a hinge enabling the appropriate flawless rotation. We propose
a simple heuristic to identify a consistent hinge position. For
given intersecting structures, the area of intersection is com-
puted and the maximal radius circle fitting inside this intersec-
tion is found. The hinge is then placed at the center of this cir-
cle. Figure 17 shows two intersecting shapes, the intersection
region and the computed maximal radius circle.

Since our objective is to create fully-connected puppets, each
extracted part should be connected to the part on which it rests.
After each step of recursive part decomposition, the maximal
radius circle lying in the intersection area of the extracted part
along with the parent part is computed and shown as a sug-
gested hinge position for the user. Various puppets fabricated
and connected with our technique are shown in Figure 16. Max-
imal radius circles (black colored circles) along with hinge po-
sitions (red colored dots) are shown in the second column of
Figure 16.

8.2. Part-based 3D modeling
From a given 2D sketch, several methods are able to recon-

struct a corresponding 3D model. These algorithms are gen-
erally designed to support only simple curves as input. In ad-
dition to complicating the interpretation of the 3D shapes, the
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Fig. 16. Fabrication of articulated puppets from a single sketch: With a simple extension, we can use our system to suggest hinge positions between
appropriate parts in order to fabricate cardboard puppets. This figure shows the input sketches and hinge positions along with various poses of puppets
we fabricated from them.

Fig. 17. (left) Two sample intersecting curves, (middle) intersection region
and (right) maximum radius circle lying inside the area of intersection.

use of complex sketches with internal contours as input also
requires special techniques to infer depth information between
the model parts. We propose a method to automate this 3D
modeling procedure by decomposing sketches with connected
inner contours into inflatable parts that are positioned in depth
afterward. Our current implementation makes use of the recent
algorithm of Parakkat et al. [43] for seeks of simplicity. Indeed
implicit surfaces [31] would have been an excellent choice too,
and would have led to smoother results. The inflation algorithm
from [43] is modified as follows:

1. The pixels lying on the outer boundary of the sketch are
extracted and used to create a point set S .

2. A Delaunay triangulation of S is computed.

3. The Delaunay triangulation is restricted inside the sketch,
similarly to [44]. This procedure removes Delaunay trian-
gles located outside the shape.

4. Each non-boundary triangle edge is converted to a circle
and is stitched with its neighbours [43] to generate a 3D
inflation of the part.

5. A uniform sampling is applied to smooth the reconstructed
model.

Figure 18 illustrates the various steps of the inflation algo-
rithm. Figures (a) to (e) respectively show an input sketch, its
Delaunay triangulation, the removal of the outside Delaunay
triangles, the mesh inflation and the result after smoothing.

The inflation algorithm is separately applied to each individ-
ual, decomposed part. In our implementation, a fast user inter-
vention is then required to set the relative depth value of each
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(a) (b) (c) (d) (e)

Fig. 18. (a) Input sketch, (b) Delaunay triangulation, (c) Result after re-
stricted Delaunay, (d) triangulation inflation, (e) final 3D model after uni-
form sampling.

inflated part. This simple user interaction could be automated
using the depth assignment procedure presented by Entem et
al. [31]. Figure 19 shows several sketches with their 3D recon-
structions. It has to be noted that, since the occluded legs (cat
and rabbit) are anatomically incorrect, the symmetric copies of
the foreground legs have been used to create the 3D models.
Table 2 shows the time taken for creating 3D models and as-
signing depths. The generated shapes assume circular limbs
and do not include more complex anatomic details. Additional
user interaction would be required to improve the quality of the
final shapes.

Figure Fox Bunny Character Cat
Modeling time(secs) 4.31 4.09 3.997 5.162
Ordering time(secs) 75 96 20 92

Table 2. Time taken for 3D modeling of parts and their depth arrangement.

9. Discussion

Our method for structuring complex drawings performs as
expected in most cases. We point out that once a drawing is
processed, the union of the extracted parts does not necessarily
exactly correspond to the initial outline since the blending be-
tween parts is not conserved. However, it is very similar and
it would be possible to retrieve a similar outline by represent-
ing the parts’ contours as iso-contours of 2D scalar fields and
blending them together. Scalar fields with skeleton could also
allow for easy directional rescaling of structural parts to allow
for illusory 3D rotations. For instance, this extension could be
used to improve the animation of our swan’s wings.

In some cases, a valid drawing may be ambiguous and gives
rise to several different interpretations. This is the case for the
example in Figure 20, where the shape could either be inter-
preted as a boxing glove (b) or as a snail head protruding out
of the shell (c). Our method will output a single result in such
cases, the one in (c), because of the way we process complex
suggestive contours. Some curves that would be processed nat-
urally by a human as contours are not processed when there is
no T-junction such as for the beak of the bird in Figure 1.

Lastly, similarly to the metric in [1], our dSSI metric could
also be used to define a distance between two points of the
contour, which we would define as the dSSI distance between
their two corresponding S-skeleton’s vertices. In future work
we wish to explore the possible applications of this new metric
to contour drawings.

9.1. Comparison with previous work

The closest work we can compare with is SmoothSketch [25].
While they look for a plausible completion of the hidden con-
tour hinted by cusps, we instead use the facing contour to
smoothly wrap a curve around the hypothetical 3D shape as
shown in Figure 21. We emphasize that the segment of our
hidden closure that is near the T-junction is a plausible hidden
contour. Thus, our method could benefit figural completion of
cusps in SmoothSketch’s failure cases. However, we think that
both this algorithm and ours should be used in a complete ap-
plication since hidden contour completion is more meaningful
than our decomposition for the case of cusps that are small rel-
ative to the local thickness of the shape, and specific cases such
as the swan’s wing.

The recursivity of our decomposition hides some perceptual
information such as similarity, grouping, symmetry. In the paw
example in Figure 21(c,d), we perceive the similarity and sym-
metry of the fingers. However our algorithm first decomposes
the foreground finger, and considers the two others as a whole,
thus the background finger is eventually perceived as big as
the middle one once the first is extracted. Designing a global
method from our recursive one is a non trivial problem since
the closures are interdependent in many cases.

We also show results on inputs from [31] in Figure 22 (top,
middle). Though the segmentation is similar, our initialization
step cannot complete complex hidden contours. This limita-
tion would locally require a completion similar to the one used
in [34] but it is non trivial to combine this method with figu-
ral completion to be able to complete parts with distinct visi-
ble regions in the absence of distinct similarities between these
regions such as color or grouping annotations. However our
algorithm tackles the case of parts hinted by single suggestive
contours as shown in Figure 22 (bottom).

9.2. Limitations

Even though our method gives good results in most cases, we
have a few limitations as well. One main problem is the cyclic
arrangement of parts over one another. Figure 23(a) shows an
example in which the petals are overlapping in a cyclic fashion.
In this case, layering cannot be done using the proposed method
and our part decomposition phase fails. Since we are assum-
ing that the occlusion results in either T-junctions or cusps, the
more complex junctions are not processed in the current system.

Many limitations are found in the initialization step, when
drawings carry ambiguities at curve intersections, notably when
T-junctions are not well defined either due to special view or
surface contact as in Figure 23 (b,c) and Figure 26 (2,3), or
misleading because the hypothetical occluded contour is in fact
a texture change as in Figure 23 (e, left). The latter limitation
can be manually worked around by erasing a part of the stroke
as in Figure 23 (e, right).

9.3. Future Work

Our current method can be improved in various ways. One of
them is to include user interventions to solve ambiguous cases
(recognize whether two concentric circles represent two spheres
or a torus), and to do assisted segmentation as in [34]. Another
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Fig. 19. 3D modeling from a single, complex organic sketch. the resulting model is first depicted from the drawing viewpoint and then from various views.

Fig. 20. An ambiguity of interpretation. Our algorithm can only produce
the result (c) while (b) would also be a perceptually plausible result.

(a) (b) (c) (d)

Fig. 21. Comparison of our results (b,d) with SmoothSketch’s failure cases
(a,c).

interesting direction is to use decorative curves as suggestive
contours. Figure 24 shows a case in which the decorative curve
represents a suggestive curve and our method would ignore it.

In terms of applications, a first interesting avenue for future
work would be to extend our work from animated puppets to
2D vector animation, in order to produce animated results such
as the manually created flying swam example at the bottom of
Figure 1 (c). To achieve this, in addition to the method for com-

puting hinges we already discussed, an automatic mechanism to
clean and blend 2D contours of animated subshapes should be
provided. This could be done with the help of 2D implicit con-
tours and specially designed combination operators for curves.
Note that beyond local blending, the main challenge here is
to automatically remove the non-salient parts of the contours
of overlapping parts, while ensuring temporal coherence. In
this context, the 3D reconstructions we already provided could
serve as a 3D intermediate representation. It could also allow us
to apply out-of-plane rotations to limbs and to change the view-
point in animated sketches, two cases in which the silhouettes
and occlusions between shape parts need to be recomputed.

Lastly, 3D shape reconstruction from a 2D sketch would ben-
efit from automatic depth inference, which we could do using
the amount of overlap between shape parts. Decoration curves
could then be projected back onto the 3D model. Moreover,
our current 3D reconstruction method could be improved by
smoothly blending parts thanks to implicit modeling, similarly
to what was done in [31, 32] in a more constrained case.

10. Conclusion

We presented the first automatic method able to use com-
plex inner contours in the analysis and recursive decomposi-
tion of drawings that represent smooth shapes. Our decompo-
sition method outputs a structure of closed 2D shapes layered
in depth. It relies on the inference and progressive refinement
of a partial depth tree to store depth information. A new metric
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Fig. 22. Results on two drawings from [31] and the third is the second draw-
ing minus two suggestive contours, a case that their algorithm could not
handle. Red dotted curves are contours that make our initialization stage
fail (they are manually removed before further processing).

a) b) e)c) d)

Fig. 23. Different limitation cases of the initialization step (b, c, d, e) and
recursive decomposition algorithm (a).

computed along a skeleton was proposed to detect salient parts
of complex drawings including internal silhouette curves. We
introduced a new, perception-based criterion for selecting the
most salient possible junction regions, prioritizing them, and
using them to recursively segment a shape into parts. An effi-
cient implementation of curve closures using a variation of the
Scale-Invariant MVC functional was defined for closing the ex-
tracted parts, hidden or salient. Lastly, we managed to keep
most parameters scale-invariant, enabling us to achieve struc-
tural decomposition of drawings with different resolutions of
features.

Many applications can benefit from our method. As we have
illustrated, it enables organic sketches to be easily edited in a
meaningful way. Subdivision and depth layering makes the
model ready for simple 2D animations. As discussed in Sec-
tion 8, the decomposition algorithm aids in part-based 3D shape
modeling, a domain where complex sketches with a variety of

Fig. 24. An input where a suggestive contour is not connected to the outer
contour and thus misclassified as a decorative element in our initializaton
step. We would like to use it as a possible segment of a foreground closure
in future works.

Fig. 25. Results on three drawings also used in [32], except that we removed
the hat of the character. Warmer colors are in the foreground.

internal contours were never considered so far. As future work,
we also plan to further ease 2D animation of complex sketches
by developing an automatic mechanism to locally clean and
blend part contours at each animation step, in order to enable
smooth transitions between silhouette curves where and when
needed.
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