
Approximate Integer Common Divisor Problem relates

to Implicit Factorization

Santanu Sarkar and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India
{santanu r, subho}@isical.ac.in

Abstract. In this paper, we analyse how to calculate the GCD of k (≥ 2) many large integers,
given their approximations. Two versions of the approximate common divisor problem, presented by
Howgrave-Graham in CaLC 2001, are special cases of our analysis when k = 2. We then relate the
approximate common divisor problem to the implicit factorization problem. This has been introduced
by May and Ritzenhofen in PKC 2009 and studied under the assumption that some of Least Significant
Bits (LSBs) of certain primes are same. Our strategy can be applied to the implicit factorization
problem in a general framework considering the equality of (i) Most Significant Bits (MSBs), (ii) Least
Significant Bits (LSBs) and (iii) MSBs and LSBs together. We present new and improved theoretical
as well as experimental results in comparison with the state of the art works in this area.

Keywords: Greatest Common Divisor, Factorization, Integer Approximations, Implicit Fac-
torization, Lattice, LLL.

1 Introduction

It is known that given two large integers a, b (a > b), one can calculate the GCD efficiently
in O(log2 a) time [STN02, Page 169]. In [HOW01], Howgrave-Graham has shown that it is
possible to calculate the GCD efficiently when some approximations of a, b are available. This
problem was referred as “approximate common divisors”. Using the strategy of [HOW01],
Coron and May [COR07] proved the deterministic polynomial time equivalence of computing
the RSA secret key and factoring.

In a recent paper [MAY09], May and Ritzenhofen explained the problem of implicit
factorization. The motivation of this problem in the context of oracle complexity has nicely
been explained in [MAY09]. Thus we directly get into the problem description. Consider
N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and q1, q2, . . . , qk are primes. It
is also considered that p1, p2, . . . , pk are of same bit size and so are q1, q2, . . . , qk; this is
followed throughout the paper unless otherwise mentioned. Given that certain portions of
bit pattern in p1, p2, . . . , pk are common, the question is under what conditions it is possible
to factor N1, N2, . . . , Nk efficiently. In [MAY09], the result was based under the assumption
that some amount of LSBs are same in p1, p2, . . . , pk. Later, in [SAR09], different cases has
been considered, i.e., (i) some portions of LSBs are same and/or some portions of MSBs
are same, (ii) some portions at the middle are same, have been considered. However, the
technique of [SAR09] could only be applied for k = 2. Recently in [FAU10], the results

of [SAR09] has been improved. Note that the work of [FAU10] and certain part of this work
(Sections 2, 3, except Section 3.1) [SAR10] are done independently at the similar time.

In this paper we concentrate on the implicit factorization problem considering some
amount of (i) MSBs or (ii) LSBs or (iii) MSBs as well as LSBs are same in p1, p2, . . . , pk.
Thus the work of [MAY09] (the LSB case) as well as that of [FAU10] (the work for MSB
case) are considered in the same framework. Further, the technique takes care of the case
considering some portions of MSBs and LSBs together. Our work is of the same quality
(in general) and slightly improved (in certain cases) in comparison to [MAY09,FAU10]. We
generalize the ideas of [HOW01] for the lattice based technique that we exploit in this paper
and our strategy is different from that of [MAY09,SAR09,FAU10].

First consider k = 2. As p1, p2 share certain amount of MSBs, one can write p1−p2 = x0,
where x0 is of lesser bit size than p1 or p2. Hence N2 = (p1 − x0)q2. Therefore, gcd(N1, N2 +
x0q2) = p1. Since, N2 (known) is an approximation of N2 + x0q2 (unknown), we can use the
technique of [HOW01] to solve this problem efficiently and get p1 under certain conditions.
This gives factorization of N1. Additionally, when p1 > x0q2, then either ⌊N2

p1
⌋ or ⌈N2

p1
⌉ will

provide q2. This is explained in detail in Section 2.1.
Next we generalize the PACDP given in [HOW01]. Let a1, a2, . . . , ak are integers with

gcd(a1, a2, . . . , ak) = g. Suppose a
(0)
2 , . . . , a

(0)
k are given which are approximations of a2, . . . , ak

respectively. We like to find g from the knowledge of a1, a
(0)
2 , . . . , a

(0)
k . An immediate appli-

cation of our general version towards the implicit factorization is as follows. We can write
p1 = p1 + x1, . . . , pk = p1 + xk where x1 = 0. Hence p1 = gcd(N1, N2 − x2q2, . . . , Nk − xkqk)
and consequently, we can find x2q2, . . . , xkqk under certain conditions.

For application of the results related to approximate integer common divisor to implicit
factorization, we need to generalize the PACDP [HOW01]. Let us describe the problem which
we name as Extended Partially Approximate Common Divisor Problem (EPACDP).

Definition 1. EPACDP.

Let a1, a2, . . . , ak be large integers of same bit size and g = gcd(a1, a2, . . . , ak). Consider that

a
(0)
2 , . . . , a

(0)
k are the approximations of a2, . . . , ak respectively and a

(0)
2 , . . . , a

(0)
k are of same

bit size too. Let a2 = a
(0)
2 + x

(0)
2 , . . . , ak = a

(0)
k + x

(0)
k . We need to find x

(0)
2 , . . . , x

(0)
k from the

knowledge of a1, a
(0)
2 , . . . , a

(0)
k .

The PACDP of [HOW01] considers only a1, a2. For application to implicit factorization,
we get one of the integers, denoted by a1 in Definition 1, exactly and the rest of the integers
a2, . . . , ak as approximations.

The problem when a1 is not available exactly, but an approximation of a1 is available,
is referred as General Approximate Common Divisor Problem (GACDP) in [HOW01]. One
can extend it as follows with the name Extended General Approximate Common Divisor
Problem (EGACDP). The GACDP of [HOW01] considers only a1, a2.

Definition 2. EGACDP.

Let a1, a2, . . . , ak be large integers of same bit size and g = gcd(a1, a2, . . . , ak). Consider that

a
(0)
1 , a

(0)
2 , . . . , a

(0)
k are the approximations of a1, a2, . . . , ak respectively and a

(0)
1 , a

(0)
2 , . . . , a

(0)
k

are of same bit size too. Let a1 = a
(0)
1 + x

(0)
1 , a2 = a

(0)
2 + x

(0)
2 , . . . , ak = a

(0)
k + x

(0)
k . We need to

find x
(0)
1 , x

(0)
2 , . . . , x

(0)
k from the knowledge of a

(0)
1 , a

(0)
2 , . . . , a

(0)
k .

Since for the implicit factorization problem we get a1 exactly, EPACDP maps directly to
it.

Contribution and Roadmap:

– We generalize the partially approximate common divisor problem (PACDP) [HOW01]
in Section 2 and show how our generalized version applies to the implicit factorization
problem described in [MAY09].

– In Section 2.1, we apply our result for the case k = 2 and show when we can achieve
better theoretical result than that of [SAR09]. The implicit factorization problem while
the MSBs are equal could be handled in [SAR09] only for k = 2. We also explain the case
for k = 3 in Section 2.2 to detail our technique.

– The results of Section 2 are approximated in a closed form expression using a sublattice
structure in Section 3. For simplicity we initiate our discussion with the case (i) when
the primes p1, . . . , pk share some amount of MSBs. However, a little modification of
our strategy (presented in Section 3.1) shows that the method works as well for the
cases (ii) when the primes p1, . . . , pk share some amount of LSBs and also (iii) when the
primes p1, . . . , pk share some amount of MSBs as well as LSBs. Based on this we present
closed form bounds for the solution for implicit factorization when p1, . . . , pk share some
amount of bits. To show the improvements, our results are compared in detail with that
of [MAY09,SAR09,FAU10].

– We also exploit another recently presented technique [DJK09] for calculation of approxi-
mate common divisor. Though the theoretical bound of this technique is worse than that
of our results in Section 3, we can utilize it for better experimental performance. This is
presented in Section 4.

– Moreover, we study the EGACDP, the generalization of GACDP [HOW01] in Section 5.

2 The General Solution for EPACDP

Towards solving the EPACDP, consider the polynomials

h2(x2, . . . , xk) = a
(0)
2 + x2,

. ,

hk(x2, . . . , xk) = a
(0)
k + xk, (1)

where x2, . . . , xk are the variables. Clearly g (as in Definition 1) divides hi(x
(0)
2 , . . . , x

(0)
k) for

2 ≤ i ≤ k.
Now let us define the shift polynomials

h0,...,0,j2,...,jk
(x2, . . . , xk) = h

j2
2 . . . h

jk

k a
m−j2−...−jk

1 , (2)

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m where the integer m ≥ 0
is fixed.

Further, we define another set of shift polynomials

h0,...,0,in,0,...,0,j2,...,jk
(x2, . . . , xk) = xin

n h
j2
2 . . . h

jk

k , (3)

with the following: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and (ii) j2+. . .+jk =
m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

We also need the following heuristic assumption to proceed.

Assumption 1. Consider a set of polynomials {f2, f3, . . . , fk} on k− 1 variables having the

root of the form (x
(0)
2 , . . . , x

(0)
k). Then we will be able to collect the root efficiently using

resultants.
Let us now state the following result due to Howgrave-Graham [HOW97].

Lemma 1. Let h(x2, . . . , xk) ∈ Z[x] be the sum of at most ω monomials. Suppose that

h(x
(0)
2 , . . . , x

(0)
k) ≡ 0 mod Nm where |x(0)

2 | ≤ X2, . . . , |x(0)
k | ≤ Xk and ||h(x2X2, . . . , xkXk)|| <

Nm
√

ω
. Then h(x

(0)
2 , . . . , x

(0)
k) = 0.

We also note that the basis vectors of an LLL-reduced basis fulfill the following prop-
erty [LLL82,MAY03] (see also [ELN07, Theorem 3.2, Page 22]).

Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm applied on L

outputs a reduced basis of L spanned by {v1, . . . , vω} with

||v1|| ≤ ||v2|| ≤ . . . ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, . . . , ω,

in polynomial time of dimension ω and the bit size of the entries of L.

Note that gm divides any shift polynomial h...(x
(0)
2 , . . . , x

(0)
k). Let X2, . . . , Xk be the upper

bounds of x
(0)
2 , . . . , x

(0)
k respectively. Now we define a lattice L using the coefficient vectors of

h...(x2X2, . . . , xkXk). Let the dimension of L be ω. Under Assumption 1, one gets x
(0)
2 , . . . , x

(0)
k

using lattice reduction over L, if 2
ω(ω−1)

4(ω+2−k) det(L)
1

ω+2−k < gm
√

ω
. The result follows from Lemma 1

and putting i = k− 1 in Lemma 2. Neglecting the small constants and considering k << ω

(in fact, we will show that ω is exponential in k in our construction), we get the condition

as det(L)
1
ω < gm, i.e., det(L) < gmω. This is written formally in Theorem 1 later.

Before proceeding to the next discussion, we denote that
(

n

r

)

is considered in its usual
meaning when n ≥ r ≥ 0 and in all other cases we will consider the value of

(

n

r

)

as 0.

Lemma 3.

ω =
m

∑

r=0

(

k + r − 2

r

)

+
k

∑

n=2

t
∑

in=1

n−2
∑

r=0

(−1)r

(

n− 2

r

)(

k +m− rin − 2

m− rin

)

.

Proof. Let j2 + . . . + jk = r where ji ≥ 0 for 2 ≤ i ≤ k. The number of such solutions is
(

k+r−2
r

)

. Hence the number of shift polynomials in Equation 2 is ω1 =
m

∑

r=0

(

k + r − 2

r

)

.

For fixed n, in, the number of shift polynomials in Equation 3 is the number of all possible
solutions of j2 + . . . + jk = m for 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m. Now
the number of all possible solutions of j2 + . . . + jk = m for 0 ≤ j2, . . . , jn−1 < in, and
0 ≤ jn, . . . , jk ≤ m is the co-efficient of xm in (1 + x + . . . + xin−1)n−2(1 + x + . . . +
xm)k−n+1 and we denote the coefficient by c(n, in), as we have fixed n, in. Now (1+x+ . . .+

xin−1)n−2(1+x+. . .+xm)k−n+1 = (1−xin

1−x
)n−2(1−xm+1

1−x
)k−n+1 = (1−xin)n−2(1−xm+1)k−n+1(1−

x)−k+1. Hence c(n, in) will be the co-efficient of xm in (1 − xin)n−2(1 − x)−k+1. We have

(1 − xin)n−2 =
n−2
∑

r=0

(−1)r

(

n− 2

r

)

xinr and (1 − x)−k+1 =
∞

∑

r=0

(

k + r − 2

r

)

xr. So, c(n, in) =

n−2
∑

r=0

(−1)r

(

n− 2

r

)(

k +m− rin − 2

m− rin

)

. Hence the number of shift polynomials in Equation 3

is ω2 =

k
∑

n=2

t
∑

in=1

c(n, in). Finally, ω = ω1 + ω2 provides the result. ⊓⊔

Lemma 4. The determinant of L is given by det(L) = P1P2 where

P1 =
∏

X
j2
2 X

j3
3 . . .X

jk

k a
m−j2−...−jk

1

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m, and

P2 =
∏

X in
n X

j2
2 X

j3
3 . . .X

jk

k with the following: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and

a positive integer t, and (ii) j2 + j3 + . . . + jk = m, when 0 ≤ j2, . . . , jn−1 < in, and
0 ≤ jn, . . . , jk ≤ m.

Proof. The matrix (corresponding to the lattice L) containing the basis vectors is triangular
and has the following two kinds of diagonal entries:

X
j2
2 X

j3
3 . . .X

jk

k a
m−j2−...−jk

1 , (4)

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m where the integer m ≥ 0
fixed and

X in
n X

j2
2 X

j3
3 . . .X

jk

k , (5)

with the following: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and (ii) j2 + j3 +
. . .+ jk = m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

Clearly P1 is the product of the elements from (4) and P2 is the product of the elements
from (5). Hence det(L) = P1P2. ⊓⊔

The running time of our algorithm is dominated by the runtime of LLL algorithm, which
is polynomial in the dimension of the lattice and in the bitsize of the entries. Since the

lattice dimension in our case is exponential in k so the running time of our strategy is
poly{log a1, exp(k)}. Thus, for small fixed k our algorithm is polynomial in log a1. Now, we
have the following main result.

Theorem 1. Under Assumption 1, the EPACDP (as in Definition 1) can be solved in
poly{log a1, exp(k)} time when det(L) < gmω, where det(L) is as in Lemma 4 and ω is
as in Lemma 3.

One may also consider the same upper bound on the errors x
(0)
2 , . . . , x

(0)
k . In that case we

get the following result.

Corollary 1. Considering the same upper bound X on the errors x
(0)
2 , . . . , x

(0)
k , we have

det(L) = P1P2 where

P1 =X
Pm

r=0 r(k+r−2
r)a

Pm
r=0(m−r)(k+r−2

r)
1 ,

P2 =X

k
∑

n=2

t
∑

in=1

(in +m)

n−2
∑

r=0

(−1)r

(

n− 2

r

)(

k +m− rin − 2

m− rin

)

.

Proof. Let X2 = X3 = . . . = Xk = X. Then from (4), we have
X

j2
2 X

j3
3 . . .X

jk

k a
m−j2−...−jk

1 = Xj2+...+jka
m−j2−...−jk

1 , for non-negative integers ji, 2 ≤ i ≤ k

such that j2 + . . . + jk ≤ m. Let j2 + . . . + jk = r where 0 ≤ r ≤ m. The total number of
such representation is

(

k+r−2
r

)

. Hence

P1 =
m
∏

r=0

(Xram−r
1)(

k+r−2
r) = X

Pm
r=0 r(k+r−2

r)a
Pm

r=0(m−r)(k+r−2
r)

1 .

For calculating P2, we have the following constraints: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and
a positive integer t, and (ii) j2 + j3 + . . . + jk = m, when 0 ≤ j2, . . . , jn−1 < in, and
0 ≤ jn, . . . , jk ≤ m. Thus,

P2 =

k
∏

n=2

t
∏

in=1

X in
n X

j2
2 X

j3
3 . . .X

jk

k =

k
∏

n=2

t
∏

in=1

X inc(n,in)Xmc(n,in)

= X
Pk

n=2

Pt
in=1(in+m)

Pn−2
r=0 (−1)r(n−2

r)(k+m−rin−2
m−rin

).

⊓⊔

As the results in this section are quite involved, we present below a few cases for better
understanding and comparison with existing results.

2.1 Analysis for k = 2

We write the proof of this special case in detail as it shows that this special case is in line
of the proof of [COR07, Theorem 3] where the strategy to solve the partially approximate

common divisor problem (PACDP) [HOW01] has been exploited. As described in [COP97],
after applying LLL, if the output polynomials are of more than one variable, then to collect
the roots from these polynomials one needs, Assumption 1. However, in this case, Assumption
1 is not required since there is only one variable in the polynomial that we will consider.

Theorem 2. Let N1 = p1q1 and N2 = p2q2, where p1, p2, q1, q2 are primes. Let N ≈ N1 ≈
N2, q1, q2 ≈ Nα and |p1 − p2| < Nβ. Then one can factor N1 and N2 deterministically in
poly(logN) time when β < 1 − 3α+ α2, provided 2α + β ≤ 1.

Proof. Let x0 = p1 − p2. We have N1 = p1q1 and N2 = p2q2 = (p1 − x0)q2. Our goal is to
recover x0q2 from N1 and N2. Since |x0| < Nβ and q2 = Nα, we can take X = Nα+β as an
upper bound of x0q2. Now we consider the shift polynomials

gij(x) = xi(N2 + x)jN
m−j
1 (6)

for i = 0, 0 ≤ j ≤ m and j = m, 1 ≤ i ≤ t,

where m, t are fixed non-negative integers. Clearly, gij(x0q2) ≡ 0 mod (pm
1).

We construct the lattice L spanned by the coefficient vectors of the polynomials gij(xX)
in (6). One can check that the dimension of the lattice L is ω = m+t+1 and the determinant
of L is

det(L) = X
(m+t)(m+t+1)

2 N
m(m+1)

2
1 ≈ X

(m+t)(m+t+1)
2 N

m(m+1)
2 . (7)

Here, P1 = X
m(m+1)

2 N
m(m+1)

2 and P2 = Xmt+ t(t+1)
2 (the general expressions of P1, P2 are

presented in Lemma 4). Using Lattice reduction on L by LLL algorithm [LLL82], one can

find a non-zero vector b whose norm ||b|| satisfies ||b|| ≤ 2
ω−1

4 (det(L))
1
ω . The vector b is

the coefficient vector of the polynomial h(xX) with ||h(xX)|| = ||b||, where h(x) is the
integer linear combination of the polynomials gij(x). Hence h(x0q2) ≡ 0 mod (pm

1). To apply
Lemma 1 and Lemma 2 for finding the integer root of h(x), we need

2
ω−1

4 (det(L))
1
ω <

pm
1√
ω
. (8)

Neglecting small constant terms, we can rewrite (8) as det(L) < pmω
1 . Substituting the

expression of det(L) from (7) and using X = Nα+β , p1 ≈ N1−α we get

(m+ t)(m+ t+ 1)

2
(α + β) < m((1 − α)(m+ t+ 1) − m+ 1

2
). (9)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (9) as

ψ(α, β, τ) = (−α− β)
τ 2

2
+ (−2α− β + 1)τ + (−3α

2
− β

2
+

1

2
) > 0. (10)

The optimal value of τ , to maximize β for a fixed α is τ = 1−β−2α

α+β
. Since τ ≥ 0 we need

1 − β − 2α ≥ 0. (11)

Putting the optimal value of τ in (10), we get

α2 − 3α− β + 1 > 0. (12)

Once x0q2, the integer root of h(x), is known, we get p1 by calculating the GCD of N1, N2 +
x0q2. As long as |x0q2| < p1, we get q2 by calculating the floor or ceiling of N2

p1
. As |x0q2| ≤

Nα+β and p1 ≈ N1−α, to satisfy |x0q2| ≤ p1 we need 2α + β ≤ 1 which is incidentally same
as (11).

Our strategy uses LLL [LLL82] algorithm to find h(x) and then calculates the integer root
of h(x). Both these steps are deterministic polynomial time in logN . Thus the result. ⊓⊔

The relation presented in (9) provides the bound when the lattice parameters m, t are spec-
ified. The asymptotic relation independent of the lattice parameters has been presented
in (12). This is the theoretical bound and may not be reached in practice as we work with
low lattice dimensions. Now let us compare our results with that of [SAR09].

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

α →

U
p
p
e
r

b
o
u
n
d
 o

f
β
 →

case(i)

case(ii)

case(iii)

Fig. 1. Comparison of our theoretical result [case (i), works for both MSBs and LSBs] with that of [MAY09] [case
(ii), works for LSBs], [FAU10] [case (ii), works for MSBs] and [SAR09] [case (iii), works for MSBs].

1. In [SAR09, Theorem 2.1] it has been explained that factorization will be successful when
Ψ (α, β) = 4α2 + 2αβ + 1

4
β2 − 4α − 5

3
β + 1 > 0 provided 1 − 3

2
β − 2α ≥ 0. In our case,

the upper bound of β is α2 − 3α + 1. Putting this upper bound of β in Ψ we get Ψ < 0
when α ≤ 0.33. Hence upper bound of β in our case will be greater than of [SAR09] when
α ≤ 0.33.

2. The heuristic presented in [SAR09] is polynomial time in logN (based on Assumption 1
in [SAR09, Introduction]), while our algorithm is deterministic polynomial time in logN .

3. The result of [SAR09] could not be extended for k > 2, but our result can be extended
for general k.

4. We get similar quality of experimental results as in [SAR09] and both the experimental
results (i.e., our and that of [SAR09]) almost coincide with our theoretical results. Our
experimental results are same as our theoretical results following (9) for specific lattice
dimensions, whereas the experimental results of [SAR09] are better than the theoretical
results of [SAR09] as explained in [SAR09, Remark 2].

We also like to compare our result with that of [MAY09,FAU10]. The strategy of [MAY09]
considers equality in some LSBs of p1, p2. One may note that our theoretical results for the
MSB case is same as that of the LSB case (see Section 3.1 later). The strategy of [MAY09]
works when β ≤ 1 − 3α. In our case, β < 1 − 3α + α2. It is thus immediate to see that
our upper bound is better than that of [MAY09]. Given α, the amount of bit sharing is
(1 − α − β) log2N . Thus, for k = 2, we need smaller number of bit sharing in LSBs for
implicit factorization than the number of bit sharing in LSBs achieved in [MAY09]. For
k = 2, the strategy of [FAU10] works in the MSB case when β ≤ 1 − 3α − 3

log2 N
, and thus

it is clear that our theoretical result is better than [FAU10] for the MSB case. Later in
Section 3, we will compare our results with that of [MAY09,FAU10] for all k ≥ 2.

One may refer to Figure 1 for the comparison of the theoretical results. The curve for
the theoretical result given in [FAU10] (MSB case) will be parallel and slightly below that
of the curve for [MAY09] (LSB case) and that is why we have not drawn it separately.

2.2 Analysis for k = 3

As we have already pointed out, the idea of [SAR09] could not be extended for k > 2.
However, our technique works in the general case. We now explain the case for k = 3 in
detail.

Theorem 3. Let N1 = p1q1, N2 = p2q2 and N3 = p3q3, where p1, p2, p3, and q1, q2, q3 are
primes. Let N,N1, N2, N3 be of same bit size and q1, q2, q3 ≈ Nα, |p1 − p2| < Nβ, |p1 − p3| <
Nβ. Then, under Assumption 1, one can factor N1, N2 and N3 in poly(logN) time when

β < (1 − α)
3
2 − α, provided 2α + β ≤ 1.

Proof. Let x0 = p2 − p1 and y0 = p3 − p1. We have N1 = p1q1, N2 = p2q2 = (x0 + p1)q2, N3 =
(y0 + p1)q3. Our goal is to recover x0q2, y0q3 from N1, N2 and N3. Let X = Nα+β . Clearly
X is an upper bound of x0q2, y0q3. Also we have p1 ≈ N1−α. When k = 3 then P1 =

X
m3

3
+o(m3)N

m3

6
+o(m3).

Let t = τm. To have a manageable formula for P2, we need to assume t ≤ m + 1. Then

P2 = Xm3τ2+m3τ+ m3τ3

3
+o(m3) and ω = m2

2
+m2τ + m2τ2

2
+ o(m2).

Neglecting the o(m3) terms, the required condition det(L) < pmω
1 implies (1

3
+ τ 2 + τ +

τ3

3
)(α+ β) + 1

6
< (1 − α)(1

2
+ τ + τ2

2
), i.e.,

−1

3
τ 3α− 1

3
τ 3β − 3

2
τ 2α− τ 2β +

1

2
τ 2 − 2τα− τβ + τ − 5

6
α− 1

3
β +

1

3
> 0. (13)

To maximize β for a fixed α, the optimal value of τ is 1−2α−β

α+β
. Putting this optimal value

of τ in (13), we get the required condition as −α3 + 2α2 − 2αβ − β2 − 3α + 1 > 0, i.e.,
β <

√
1 − 3α + 3α2 − α3 −α. As τ ≥ 0, we also need the constraint 2α+β ≤ 1. Then under

Assumption 1 (as the polynomials are of two variables), we can collect the roots successfully.
⊓⊔

3 Sublattice and Generalized Bound

In this section, we study a sublattice L′ of the lattice L explained in the previous section.
This helps in two ways as follows.

– The dimension of the sublattice L′ is less than that of L and this helps in actual experi-
ments.

– The theoretical analysis helps us to get a generalized bound for β.

We need the following technical result that will be used later.

Lemma 5. For any fixed positive integer r ≥ 1, and a large integer m,

m
∑

t=1

tr =
mr+1

r + 1
+

o(mr+1).

Proof. Let S = 1r + 2r + . . . + mr. Then,
∫ m

0
xr dx < S <

∫ m+1

1
xr dx. Thus, mr+1

r+1
< S <

(m+1)r+1−1
r+1

, which gives, mr+1

r+1
< S <

(m+1)r+1

r+1
. Now, (m+1)r+1

r+1
− mr+1

r+1
contains the terms mi

for i ≤ r. Thus, for a fixed r and large m, one can write S = mr+1

r+1
+ o(mr+1). ⊓⊔

Now we present the main result describing the bound on β.

Theorem 4. Consider EPACDP with g ≈ a1−α
1 and x

(0)
2 ≈ . . . ≈ x

(0)
k ≈ a

α+β
1 . Then, under

Assumption 1, one can solve EPACDP in poly{log a, exp(k)} time when

β <
k2 + 5αk − 2αk2 − 2α− 2k + 1 −

√
k2 + 2α2k − α2k2 − 2k + 1

k2 − 3k + 2
for k > 2 and

< 1 − 3α+ α2, for k = 2,

with the constraint 2α + β ≤ 1.

Proof. We start by explaining the shift polynomials. First we consider the following ones
which are same as given in (2) in the previous section.

h0,...,0,j2,...,jk
(x2, . . . , xk) = h

j2
2 . . . h

jk

k a
m−j2−...−jk

1 , (14)

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m where the integer m ≥ 0
fixed.

Further, we define another set of shift polynomials which is a sub-collection of the poly-
nomials presented in the last section in (3),

hi2,0,...,0,0,...,0,j2,...,jk
(x2, . . . , xk) = xi2

2 h
j2
2 . . . h

jk

k , (15)

with the following: (i) 1 ≤ i2 ≤ t, for a positive integer t, and (ii) j2+ . . .+jk = m, and ji ≥ 0
for 2 ≤ i ≤ k. Next we define a lattice L′ using the coefficient vectors of h...(x2X2, . . . , xkXk).

LetX2 = X3 = . . . = Xk = X, the common upper bound. The shift polynomials from (14)

contribute P ′
1 =

m
∏

r=0

(Xram−r
1)(

k+r−2
r) = X

Pm
r=0 r(k+r−2

r)a
Pm

r=0(m−r)(k+r−2
r)

1 to the determinant of

L′. (This P ′
1 is same as P1 in Corollary 1.) The shift polynomials from (15) contribute P ′

2 =

t
∏

i2=1

(X i2Xm)(
k+m−2

m) = X

t
∑

i2=1

(i2 +m)

(

k +m− 2

m

)

to the determinant of L′. The dimension

of L′ is ω′ =
m

∑

r=0

(

k + r − 2

r

)

+ t

(

m+ k − 2

m

)

.

Now,
(

k+r−2
r

)

= (r+1)...(r+k−2)
(k−2)!

= rk−2

(k−2)!
+ o(rk−2). Then,

P1 ≈ X
Pm

r=0 r rk−2

(k−2)!a

Pm
r=0(m−r) rk−2

(k−2)!

1 ≈ X
1

(k−2)!
mk

k a
1

(k−2)!
mk

k−1
− 1

(k−2)!
mk

k

1 , using Lemma 5 and
neglecting the lower order terms. Moreover,

P2 = X
Pt

i2=1(i2+m) mk−2

(k−2)! ≈ X
1

(k−2)!
(t2mk−2

2
+tmk−1), (neglecting the lower order terms). Fur-

ther,
ω′ ≈ ∑m

r=0
rk−2

(k−2)!
+ t mk−2

(k−2)!
≈ mk−1

(k−1)(k−2)!
+ t mk−2

(k−2)!
, (using Lemma 5 and neglecting the

lower order terms). Following Lemma 1, the required condition is det(L′) = P ′
1P

′
2 < gmω′

,
where g is the common divisor. Let g = a1−α

1 , X = a
α+β
1 . Then putting the values of g,X in

det(L′) = P ′
1P

′
2 < gmω′

, we get,

(
mk

k
+
mk−2t2

2
+mk−1t)(α + β) +

mk

k − 1
− mk

k
< (1 − α)(mk−1t+

mk

k − 1
). (16)

Now putting t = τm, (τ ≥ 0 is a real number) in (16), we get the condition as

(
1

k
+
τ 2

2
+ τ)(α + β) +

1

(k − 1)k
< (1 − α)(τ +

1

k − 1
). (17)

To maximize β for a fixed α, the optimal value of τ is τ = 1−2α−β

α+β
. Putting this optimal value

in (17), we get the condition as 4α2k2 +4αβk2+β2k2−8α2k−10αβk−3β2k−4αk2−2βk2 +
2α2+4αβ+2β2+6αk+4βk+k2−2α−2β−k > 0. From which we get the required condition
as β < k2+5αk−2αk2−2α−2k+1−

√
k2+2α2k−α2k2−2k+1

k2−3k+2
when k > 2 and β < 1−3α+α2 when k = 2.

Since τ ≥ 0, we also need the constraint 1 − 2α− β ≥ 0. Then under Assumption 1 (as the
polynomials are of more than one variable), we can collect the roots successfully. ⊓⊔

3.1 Implicit Factorization problem with shared MSBs and LSBs together

So far we continued our discussion for the MSB case for better understanding. Now we show
that the same technique works as well when MSBs and LSBs are shared together. This also

takes care of the case when only LSBs are shared. As before, consider N1 = p1q1, N2 =
p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and q1, q2, . . . , qk are primes. It is also considered
that p1, p2, . . . , pk are of same bit size and so are q1, q2, . . . , qk. We also assume that some
amount of LSBs as well as some amount of MSBs of p1, p2, . . . , pk are same.

Theorem 5. Let q1, q2, . . . , qk ≈ Nα. Consider that γ1 log2N many MSBs and γ2 log2N

many LSBs of p1, p2, . . . , pk are same. Let β = 1 − α− γ1 − γ2. Then, under Assumption 1,
one can factor N1, N2, . . . , Nk in poly{log a, exp(k)} if

β <
k2 + 5αk − 2αk2 − 2α− 2k + 1 −

√
k2 + 2α2k − α2k2 − 2k + 1

k2 − 3k + 2
for k > 2 and

< 1 − 3α+ α2, for k = 2.

with the constraint 2α + β ≤ 1.

Proof. It is given that γ1 log2N many MSBs and γ2 log2N many LSBs of p1, p2, . . . , pk are
same. Thus, we can write

p2 = p
(0)
1 +Nγ2x

(0)
2 ,

p3 = p
(0)
1 +Nγ2x

(0)
3 ,

. . .

pk = p
(0)
1 +Nγ2x

(0)
k .

Using the above relations, we have,

Niq1 −N1qi = Nγ2x
(0)
i qiq1 for 1 < i ≤ k. (18)

Suppose, aNγ2 ≡ 1 mod N1. Now multiplying Equation 18 by a, we get aNiq1 − x
(0)
i qiq1 ≡

0 mod N1.
Let bi ≡ aNi mod N1 for 1 < i ≤ k. Thus we have, biq1 − x

(0)
i qiq1 ≡ 0 mod N1. From

which, we get bi − x
(0)
i qi ≡ 0 mod p1 for 1 < i ≤ k. Hence our first aim is to find x

(0)
i qi from

N1 and bi for 1 < i ≤ k. Then from the knowledge of x
(0)
i qi, we want to find the factorization

of Ni for 1 ≤ i ≤ k. Here we have x
(0)
i ≈ N1−α−γ1−γ2 for 1 ≤ i ≤ k. Then following the

similar technique as in the proof of Theorem 4, the desired result is achieved. ⊓⊔

We extend the results related to MSBs (as in Theorem 4 and earlier) in case of LSBs or
MSBs and LSBs taken together (as in Theorem 3.1). This is achieved by exploiting the idea
of a where, aNγ2 ≡ 1 mod N1 and then multiplying the equations by a.

This is the first time a solution could be achieved considering sharing of MSBs and LSBs
together for general k. This has been studied for k = 2 in [SAR09] and it has been left as an
open problem in [FAU10].

As this method works for considering the MSBs and LSBs together, the idea works for
only LSBs too by considering one bit is shared in the MSBs (as the MSB of each of the
primes is 1).

3.2 Comparison with the work of [MAY09,FAU10]

Let us now compare our result with that of [MAY09] for the general case. The strategy
of [MAY09] considers equality in some LSBs of p1, p2, . . . , pk and we consider the same here
following the result in Section 3.1.

The strategy of [MAY09] works when β ≤ 1−α− k
k−1

α = 1− 2k−1
k−1

α. As β > 0, one may

note α < k−1
2k−1

, i.e, α < 1
2
.

We have already discussed in Section 2.1 that for the case k = 2 our result is better than
that of [MAY09]. The results of Theorem 4 for k = 2 and Theorem 2 are same, since L and
L′ are same for k = 2. However, L and L′ become different for k > 2.

For k > 2, k2+5αk−2αk2−2α−2k+1−
√

k2+2α2k−α2k2−2k+1
k2−3k+2

> 1 − 2k−1
k−1

α. Thus, for any k, k ≥ 2,
we need smaller amount of bit sharing in LSBs for implicit factorization than the number of
bit sharing in LSBs achieved in [MAY09]. Our upper bound on β is k−1−

√
k2+2α2k−α2k2−2k+1

k2−3k+2

more than the upper bound on β in [MAY09]. Thus, the gap between our bound and that
of [MAY09] reduces as k increases.

In summary, we have the following observations.

1. Our theoretical result is better than that of [MAY09] from the point that it requires less
LSBs to be equal than the number of LSBs in case of [MAY09].

2. Both our result as well as that of [MAY09, Theorem 7] are of time complexity
poly{logN, exp(k)}. However, the lattice dimension in the formulation of [MAY09] is
much smaller (exactly k) than the lattice dimension following our approach (exponential
in k). Experimentally our results provide superior outcome for k = 3 and similar kind
of outcome for k = 4, though we need more time than that of [MAY09]. Experiments
for large k is not possible with our strategy in this section. To overcome this, later in
Section 4, we present a technique that provides results for larger values of k.

3. The strategy of [MAY09] could be extended for balanced RSA moduli, which we could
not achieve in our case.

No. of shared LSBs [MAY09] in pi No. of shared LSBs (our) in pi

k Bitsize of pi, qi Theory Expt. LD Time (sec) Theory Expt. LD Time (sec)

(1 − α) log
2

N, α log
2

N k

k−1
α log

2
N

3 750, 250 375 378 3 < 10 352 367 56 41.92
* 3 700, 300 450 452 3 < 1 416 431 56 59.58
* 3 650, 350 525 527 3 < 1 478 499 56 74.54
3 600, 400 600 - - - 539 562 56 106.87

* 4 750, 250 334 336 4 < 1 320 334 65 32.87
* 4 700, 300 400 402 4 < 1 380 400 65 38.17
* 4 650, 350 467 469 4 < 1 439 471 65 39.18
* 4 600, 400 534 535 4 < 1 497 528 65 65.15

Table 1. For 1000 bit N , theoretical and experimental data of the number of shared LSBs in [MAY09] and shared
LSBs in our case. LD means Lattice Dimension.

Let us now present some numerical values (both theoretical as well as experimental) for
comparison with [MAY09] in Table 1. We have implemented the programs in SAGE 4.1 over
Linux Ubuntu 8.10 on a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz,

2 GB RAM and 2 MB Cache. In the * marked rows, experimental data is not available
from [MAY09], and we perform the experiments following the method of [MAY09]. In the
marked row, the method of [MAY09] does not work as all the bits of the primes p1, p2, p3

need to be same.
Very recently Faugere et. al. [FAU10] (independently at the same time of our work)

presented a different lattice based approach for the problem of implicit factorization with
shared MSBs of p1, p2, . . . , pk. The strategy of [FAU10, Equation (10)] works when

β ≤ 1 − α− k
k−1

α− 1
log2 N

− k
2(k−1) log2 N

(

2 + log2 k

k
+ log2(πe)

)

= 1 − 2k−1
k−1

α− 1
log2 N

− k
2(k−1) log2 N

(

2 + log2 k

k
+ log2(πe)

)

.

Similar to our comparison with that of [MAY09] for LSB case, it can be noted that
our method requires less number of MSBs to be shared compared to [FAU10] and the gap
between our bound and that of [FAU10] reduces as k increases.

No. of shared MSBs [FAU10] in pi No. of shared MSBs (our) in pi

k Bitsize of pi, qi Theory Expt. LD Time (sec) Theory Expt. LD Time (sec)
(1 − α) log

2
N, α log

2
N

2 874, 150 303 302 2 < 1 278 289 16 1.38
2 824, 200 403 402 2 < 1 361 372 16 1.51
2 774, 250 503 502 2 < 1 439 453 16 1.78
2 724, 300 603 602 2 < 1 513 527 16 2.14

3 874, 150 231 230 3 < 1 217 230 56 29.24
3 824, 200 306 304 3 < 1 286 304 56 36.28
3 774, 250 381 380 3 < 1 352 375 56 51.04
3 724, 300 456 455 3 < 1 417 441 56 70.55
3 674, 350 531 530 3 < 1 480 505 56 87.18
3 624, 400 606 604 3 < 1 540 569 56 117.14

Table 2. For 1024 bit N , theoretical and experimental data of the number of shared MSBs in [FAU10] and shared
MSBs in our case.

We have explained our results for the MSB case as well as LSB case and compared with
state of the art literature. The experimental results in both the cases are of similar quality
using our techniques. Similar results are achieved in our case if one considers sharing of
MSBs and LSBs together in the primes p1, p2, . . . , pk. That is the reason we do not repeat
these results.

4 Method for Improved Results for Larger Values of k

In [DJK09, Section 5.2], the authors studied the EPACDP for analysing the security of their
scheme. Based on the idea presented in [DJK09], we get Theorem 6. The result in Theorem 6
below is not exactly presented in a similar form in [DJK09].

One can write,

a1 = gq1,

a
(0)
2 = gq2 − x

(0)
2 ,

. . . ,

a
(0)
k = gqk − x

(0)
k .

Let M =









2ρ a
(0)
2 a

(0)
3 . . . a

(0)
k

0 −a1 0 0 0
.

.−a1









, where 2ρ ≈ x
(0)
2 . One can note that (q1, q2, . . . , qk) ·M =

(2ρq1,−q1x(0)
2 , . . . , q1x

(0)
k) = b, say. It can be checked that

||b|| <
√
ka2α+β . (19)

Moreover, | det(M)| = 2ρak−1
1 ≈ aα+β+k−1. We know that there is a vector v in the lattice

L corresponding to M such that

||v|| <
√
ka

α+β+k−1
k , (20)

following Minkowski’s theorem (see [RGV04] for more details). Now we consider the following
assumption.

Assumption 2. The vector b is a shortest vector and the next shortest vector is significantly
larger than ||b||.

Under this assumption, and from (19), (20), we get b from L if

a2α+β < a
α+β+k−1

k .

From which we get β < k−1+α−2αk
k−1

. The running time is determined by the time to calculate
a shortest vector in L which is polynomial in log a but exponential in k.

Thus, we get the following result.

Theorem 6. Consider EPACDP with g ≈ a1−α
1 and x

(0)
2 ≈ x

(0)
k ≈ a

α+β
1 . Then, under

Assumption 2, one can solve EPACDP in poly{log a, exp(k)} time when,

β < 1 − 2k − 1

k − 1
α. (21)

Thus the bound in (21) works for the case when MSBs are shared and further, using the
idea of Section 3.1, the bound in (21) can as well be used for the LSB case or the MSB and
LSB case together. From the analysis presented in Section 3.2, it is clear that this bound is
worse than the bound presented in Theorem 4 in Section 3. However, this result helps us
to provide much better experimental performance for larger values of k, that could not be
achieved by the method in Section 3.

4.1 Comparison with the work of [MAY09,FAU10]

The statement of Theorem 6 states that the time complexity is poly{log a, exp(k)}. However,
under the assumption that “the shortest vector of the lattice L can be found by the LLL
algorithm”, the complexity becomes poly{log a, k}. This happens in practice as observed
in [MAY09] too. Below we present the experimental results and compare that with the

results presented in [MAY09, Table 1, Section 6.2]. One may note that both our results
and the results of [MAY09] are of similar quality. This we have lacked with our earlier
method presented in Section 3 for larger k. We have implemented the method of [MAY09]
for comparison as presented in Table 3.

Results of [MAY09] Our results
α k Theoretical bound Experiments Time(sec.) Experiments Time(sec.)

0.25 3 375 377 < 1 376 < 1

0.35 10 389 391 < 1 390 < 1

0.40 100 405 408 50.36 407 28.21

0.44 50 449 452 7.09 451 4.04

0.48 100 485 492 68.88 488 36.36

Table 3. For 1000 bit N , theoretical (same bound for [MAY09] and in our case) and experimental data of the number
of shared LSBs in [MAY09] and shared LSBs in our case.

As we have already discussed, in the approach of [FAU10], the number of shared MSBs
should be greater than or equal to k

k−1
α log2N + 6, for k ≥ 3. In our case, number of shared

bit should be greater than (1 − α − (1 − 2k−1
k−1

α)) log2N = k
k−1

α log2N , putting the upper
bound of β.

No. of shared MSBs [FAU10] in pi No. of shared MSBs (our) in pi

k Bitsize of pi, qi Theory Expt. LD Time (sec) Theory Expt. LD Time (sec)
(1 − α) log

2
N, α log

2
N

10 874, 150 171 170 10 < 1 166 170 10 < 1
10 824, 200 227 225 10 < 1 220 225 10 < 1
10 774, 250 282 280 10 < 1 274 280 10 < 1
10 724, 300 338 334 10 < 1 328 332 10 < 1
10 674, 350 393 390 10 < 1 382 388 10 < 1
10 624, 400 449 446 10 < 1 435 444 10 < 1

40 874, 150 158 157 40 12.74 154 157 40 < 1
40 824, 200 209 206 40 17.42 205 206 40 < 1
40 774, 250 261 258 40 21.64 256 258 40 1.13
40 724, 300 312 309 40 24.17 307 308 40 1.26
40 674, 350 363 361 40 29.87 358 360 40 1.48
40 624, 400 414 412 40 34.69 409 410 40 1.75

100 874, 150 155 154 100 299.64 152 153 100 5.63
100 824, 200 206 205 100 525.67 202 204 100 9.36
100 774, 250 257 257 100 781.42 253 255 100 14.11
100 724, 300 307 307 100 1053.66 303 305 100 18.61
100 674, 350 358 357 100 1415.02 353 355 100 24.16
100 624, 400 408 408 100 2967.75 404 406 100 29.95

Table 4. For 1024 bit N , theoretical (bound for [FAU10] and in our case) and experimental data of the number of
shared MSBs in [FAU10] and shared MSBs in our case.

Advantages of our approach over [FAU10] are as follows.

1. Our theoretical result in this section is slightly better than that of [FAU10] in terms of
number of shared MSBs.

2. In the method in this section, the matrix corresponding to the lattice is a square one, but
that is rectangular in the method of [FAU10]. Hence, determinant calculation is easier in

our method. In the presence of k RSA modulus, in this case we have to reduce a k × k

matrix. Whereas, the size of the matrix in [FAU10] is k × k(k+1)
2

. Hence, in practice, the
matrix reduction in case of [FAU10] takes more time than ours. From the experimental
results presented in Table 4, it is clear that our strategy requires much less time than the
method of [FAU10].

We have implemented the method of [FAU10] (this matches with the results presented
in [FAU10, Tables 4, 5]) for comparison as presented in Table 4.

Above, we have present our results for the MSB case as well as LSB case and compared
with [MAY09,FAU10]. The experimental results in both the cases are of similar quality using
our techniques. Similar results are achieved in our case if one considers sharing of MSBs and
LSBs together, and thus we do not repeat these results.

4.2 Comparison of the methods with respect to EPACDP

So far we have discussed the methods towards applying them in implicit factorization. Now,
let us compare the method presented in this section with that of Section 3 for EPACDP
itself.

Let g ≈ a1−α and xi ≈ aβ for i = 2 to k. Following similar kind of calculations as in the
proof of Theorem 4, we get

β < 1 − 2α + α2 for k = 2 and

<
1 − 2k + 2αk + k2 − αk2 −

√
k2 + 2α2k − α2k2 − 2k + 1

k2 − 3k + 2
for k > 2. (22)

The approach in this section provides the bound as

β < 1 − k

k − 1
α.

When α ≥ k−1
k

, we can not get the common divisor by the proposed method in this section.
However, we get results in such situations using the results of Section 3. In Table 5, we
present few such examples.

k α = k−1
k

Bound of β LD Time

Inequality (22) Experimental

3 2
3

0.1835 0.135 25 10.72

4 3
4

0.1464 0.09 28 28.75

Table 5. Experimental results for 1000-bit a
(0)
i .

To conclude this section, we like to point out the following issues.

– Theoretically the idea of Section 3 is always better than that of this section.

– The method of this section works better than the idea of Section 3 experimentally for
larger values of k.

– There are some situations for small values of k, where the idea of Section 3 works better
than the strategy in this section.

5 EGACDP

So far we have concentrated on EPACDP, i.e., we considered that the first item is exactly
known. However, the more general problem is when the first item is also not known exactly
and some approximation is available. This is what we study in this section and we like to
refer to EGACDP (see Definition 2). Towards solving EPACDP, we presented two different
techniques, one in Section 2 and another in Section 4. We will try similar methods in this
section as Method I and Method II respectively. In EGACDP, we have,

a
(0)
1 = gq1 − x

(0)
1 ,

a
(0)
2 = gq2 − x

(0)
2 ,

. . . ,

a
(0)
k = gqk − x

(0)
k ,

where a
(0)
1 , . . . , a

(0)
k are known. We want to find g from a

(0)
1 , . . . , a

(0)
k .

5.1 Method I

Towards solving the EGACDP in a manner similar to Section 2, consider the polynomials

h1(x1, x2, . . . , xk) = a
(0)
1 + x1,

. ,

hk(x1, x2, . . . , xk) = a
(0)
k + xk, (23)

where x1, x2, . . . , xk are the variables. Clearly g (of Definition 2) divides hi(x
(0)
1 , x

(0)
2 , . . . , x

(0)
k)

for 1 ≤ i ≤ k.
Now let us define the shift polynomials

hs1,...,sk
(x1, x2, . . . , xk) = hs1

1 . . . h
sk

k , (24)

for non-negative integers u,m such that u ≤ s1 + . . . + sk ≤ m where the integers u,m ≥ 0
are fixed.

Let X1, . . . , Xk be the upper bounds of x
(0)
1 , . . . , x

(0)
k respectively. Now we define a lattice

L using the coefficient vectors of h...(x1X1, . . . , xkXk). Let the dimension of L be ω. One

gets x
(0)
1 , . . . , x

(0)
k (under Assumption 1 and following Lemma 1 and Lemma 2) using lattice

reduction over L, if det(L)
1
ω < gm, i.e., when det(L) < gmω (neglecting the lower order

terms).

Since the lattice dimension ω =
m

∑

s=u

(

k + s− 1

s

)

is exponential in k, the running time of

this strategy will be poly{log a1, exp(k)}. Thus, for small fixed k this algorithm is polynomial
in log a1. To summarize we get the following result.

Theorem 7. Under Assumption 1, the EGACDP can be solved in poly{log a1, exp(k)} time
when det(L) < gmω.

Since in this case matrix corresponding to the Lattice L is not square, finding det(L) may
not be easy for general k. Further, for large k, dimension of L will be very large. Experimental
results corresponding to this idea are presented in Table 6.

5.2 Method II

Here we follow the idea of Section 4. We have

a
(0)
1 = gq1 − x

(0)
1 ,

a
(0)
2 = gq2 − x

(0)
2 ,

. . . ,

a
(0)
k = gqk − x

(0)
k ,

where a
(0)
1 , . . . , a

(0)
k are known and a

(0)
i ≈ a for 1 ≤ i ≤ k. Suppose, x

(0)
i ≈ aβ for 1 ≤ i ≤ k

and g ≈ a1−α. Then qi ≈ aα for i ∈ [1, k].

Let M =











2ρ a
(0)
2 a

(0)
3 . . . a

(0)
k

0 −a(0)
1 0 0 0

.

.−a(0)
1











, where 2ρ ≈ 2x
(0)
1 . One can note that (q1, q2, . . . , qk) ·

M = (2ρq1, x
(0)
1 q2 − q1x

(0)
2 , . . . , x

(0)
1 qk − q1x

(0)
k) = b, say.

It can be checked that
||b|| < 2

√
kaα+β. (25)

Moreover, | det(M)| = 2ρ(a
(0)
1)k−1 ≈ 2aβ+k−1. Following Minkowski’s theorem, there is a

vector v in the lattice L corresponding to M such that

||v|| <
√
k2

1
ka

β+k−1
k . (26)

Under Assumption 2 (Section 4), and from (25), (26), one can obtain b from L if

aα+β < a
β+k−1

k ,

neglecting the terms 2 and 2
1
k ; from which we get β < 1 − k

k−1
α. With the knowledge of

b, one can find q1, from which g is obtained if x
(0)
1 ≤ q1. So we need 1 − k

k−1
α ≤ α, i.e.,

α ≥ k−1
2k−1

. The running time is determined by the time to calculate a shortest vector in L

which is polynomial in log a but exponential in k.
Thus, we get the following result.

Theorem 8. Consider EGACDP with g ≈ a1−α
1 and x

(0)
1 ≈ x

(0)
2 ≈ . . . ≈ x

(0)
k ≈ a

β
1 . Then,

under Assumption 2, one can solve EGACDP in poly{log a, exp(k)} time when,

β < 1 − k

k − 1
α, (27)

provided α ≥ k−1
2k−1

.

5.3 Experimental Results

In this section we present a few experimental results for both the methods. When k = 3
and 1 − α = 0.25, we have 1 − k

k−1
α < 0. In such a situation one can not get results using

Method II, but the Method I will succeed. As example, Method I succeeds given 250-bit g
for k = 3, 4, whereas Method II does not provide results in such a scenario.

For large values of k, we can not perform experiments corresponding to Method I due
to high lattice dimensions. The statement of Theorem 8 states that the time complexity is
poly{log a, exp(k)}. However, under the assumption that “the shortest vector of the lattice L
can be found by the LLL algorithm”, the complexity becomes poly{log a, k}. Thus, Method
II will work successfully and we can easily obtain the experimental results using LLL up to
k ≤ 100.

k g error LD Time (in sec.)

3 250-bit 36-bit 31 11.72

3 500-bit 245-bit 31 2.85

4 250-bit 82-bit 65 210.91

4 500-bit 320-bit 65 63.04

k g error LD Time (in sec.)

3 500-bit 249-bit 3 < 1

4 500-bit 331-bit 4 < 1

10 500-bit 441-bit 10 < 1

50 500-bit 487-bit 50 4.62

100 500-bit 490-bit 100 40.17

Method I. Method II.

Table 6. Experimental results for 1000-bit a
(0)
i .

6 Conclusion

In this paper we present a generalization of the partially approximate common divisor prob-
lem (PACDP) [HOW01] which we term as Extended Partially Approximate Common Divisor
Problem (EPACDP). This problem immediately relates to the implicit factorization problem
introduced in [MAY09]. We consider the case when some MSBs or LSBs or MSBs and LSBs
together of the primes p1, p2, . . . , pk are equal (but unknown). This covers the case when the
LSBs are equal (but unknown) in [MAY09] and MSBs are equal (but unknown) in [FAU10].
Our strategy provides new and improved theoretical as well as experimental results. We also
study the extension of GACDP (General Approximate Common Divisor Problem) [HOW01].

Here we did not concentrate on the case when some portions of the bits at the middle
of p1, p2, . . . , pk are same. This problem has been discussed in [SAR09,FAU10]. However, it
seems that our techniques in this paper cannot be immediately applied to this problem.

References

[COP97] D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of
Cryptology, 10(4):223–260, 1997.

[COR07] J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and
factoring. Journal of Cryptology, 20(1):39–50, 2007.

[DJK09] M. v. Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan. Fully Homomorphic Encryption over the Integers.
Proceedings of Eurocrypt 2010, To be published in Lecture Notes in Computer Science, Springer, 2010.
Cryptology ePrint Archive, Report 2009/616, Available at http://eprint.iacr.org/2009/616.

[FAU10] J. -C. Faugere, R. Marinier and G. Renault. Implicit Factoring with Shared Most Significant and Middle
Bits. Proceedings of PKC 2010, To be published in Lecture Notes in Computer Science, Springer, 2010.

[HOW97] N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of
Cryptography and Coding, Lecture Notes in Computer Science, Volume 1355, pages 131–142, Springer,
1997.

[HOW01] N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CALC 2001, Lecture Notes
in Computer Science, Volume 2146, pages 51–66, Springer, 2001.

[ELN07] E. Jochemsz. Cryptanalysis of RSA Variants Using Small Roots of Polynomials. Ph. D. thesis, Technische
Universiteit Eindhoven, 2007.

[LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathe-
matische Annalen, 261:513–534, 1982.

[MAY03] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University of Paderborn,
2003.

[MAY09] A. May and M. Ritzenhofen. Implicit factoring: on polynomial time factoring given only an implicit hint.
Proceedings of PKC 2009, Lecture Notes in Computer Science, Volume 5443, pages 1–14, Springer, 2009.

[RGV04] O. Regev. Lattices in Computer Science (Lecture Notes), 2004. Available at:
http://www.cs.tau.ac.il/˜ odedr/teaching/lattices fall 2004/index.html [last accessed December 19, 2009].

[RSA78] R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key
Cryptosystems. Communications of ACM, 21(2):158–164, February 1978.

[SAR09] S. Sarkar and S. Maitra. Further Results on Implicit Factoring in Polynomial Time. Advances in Mathe-
matics of Communications, 3(2):205–217, 2009.

[SAR10] S. Sarkar and S. Maitra. Approximate Integer Common Divisor Problem relates to Implicit Factorization.
All the versions available at http://eprint.iacr.org/2009/626. Submitted: 18 Dec 2009, 1st revision: 11 Feb
2010, 2nd revision: 11 May 2010.

[STN02] D. R. Stinson. Cryptography - Theory and Practice. 2nd Edition, Chapman & Hall/CRC, 2002.

