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An attempt has been made in this Letter to analyse term (week of

gestation (WOG) >37) and preterm (WOG≤ 37) conditions using

uterine electromyography (uEMG) signals and generalised Hurst

exponent (GHE) features. For this analysis, public database signals

recorded from the surface of abdomen are considered. Multifractal

detrended fluctuation analysis is performed on the signals and the

GHE is calculated. From the exponent, seven features are extracted

and data-balancing based on synthetic minority over-sampling tech-

nique is used to retain a balanced feature contribution by the term

and preterm records. Two classification algorithms namely, Naive

Bayes and logistic regression (LR) are employed to classify the

signals. Ten-fold cross validation approach is executed and the per-

formance is validated using accuracy, precision and recall. The

results show the uEMG signals exhibit multifractal characteristics

and five GHE features are significant in distinguishing the term and

preterm uEMG signals. The LR classifier gives the highest accuracy

of 97.8%. Therefore, it appears that the multifractal Hurst exponent

features in combination with LR classifier can be used as biomarkers

for predicting the preterm or term delivery during the early stage of

gestation.

Introduction: Preterm delivery, referred to as the birth of a baby before

the 37th week of gestation (WOG), is a major problem during pregnancy

resulting in a global incidence of 15 million each year. Neonates born

preterm have a higher threat of mortality and may suffer from poor

neurodevelopment. At present, there is no efficient technique to detect

preterm labour. However, early diagnosis is necessary to prevent

preterm birth [1].

Uterine electromyography (uEMG) is a method that records the

uterine electrical activity non-invasively from the surface of the

abdomen. The uEMG signals are associated with the physiological

process that causes contractions. Hence, investigation of these signals

provides a better understanding of pregnancy and labour processes

that allow prediction of preterm threat at an early stage of pregnancy

(28th WOG) [2].

Researchers emphasise on applying signal processing techniques on

uEMG signals to differentiate term and preterm records. Non-linear

techniques are proven to provide better results to investigate uEMG

signals [3]. One such method is the fractal analysis where, a non-integer

parameter called fractal dimension is estimated to define the scale invar-

iant characteristics of the signal. Fractals are structures that repeat them-

selves across different scales and give a measure of complexity [4].

A signal that possesses different fractal characteristics is said to be

multifractal in nature. Multifractal analyses are found to be advan-

tageous as a predictive and diagnostic tool in the investigation of phys-

iological signals [5]. The generalised Hurst exponent (GHE) calculated

using multifractal analysis represents the presence of long-range self-

dependencies in a signal. GHE have been used to analyse electrocardio-

gram recordings to differentiate different levels of atrial fibrillation, as it

provides information on the complexity of the atrial activation patterns

[6]. Hence, in this work, an attempt has been made to illustrate the appli-

cation of multifractal GHE features for differentiating uEMG signals in

term and preterm groups before 26 WOG.

Methodology: The uEMG signals considered in this study are acquired

from the Term–Preterm ElectroHysteroGram (TPEHG) database [3].

This dataset contains 143 term and 19 preterm delivery records,

which are recorded before 26th WOG at a sampling frequency of

20 Hz. The signals at the frequency range of 0.3–3 Hz are reported to

be efficient in differentiating term and preterm conditions [3]. Hence,

data from this band of frequencies are considered for analysis.

The uEMG signals are subjected to multifractal detrended fluctuation

analysis (MFDFA). It is a generalisation of detrended fluctuation

analysis that is used to analyse non-stationary multifractal time series

[7]. For this, the uEMG series is denoted as a series of cumulative

sums Y and divided into Nl non-overlapping segments of same length

l. A polynomial wl is fitted for every segment u to identify the

local trend and the corresponding root-mean-square gives the

fluctuation function

F2(l, u) =
1

l

∑

l

i=1

Y [(u− 1)l + i]− wl(i)
{ }2

(1)

Mean of all segments gives the q-order fluctuation function Fq(s).

The power-law function is calculated by changing the scale, and GHE

is computed for each order which is given by h(q) as follows:

Fq(l) =
1

Nl

∑

Nl

u=1

F2(l, u)
[ ]

q/2{ }1/q

≈ lh(q) (2)

GHE indicates the presence of long-range dependencies in the q-order

moments. A suitable choice of q for biological signals is from −5 to

+5 [5] and hence, the same is used in this study.

For all the signals, GHE is calculated and seven features namely,

maximum (HEMAX), minimum (HEMIN), zero-order (HE0) and Hurst

exponents (HE2), degree of multifractality (DOM), degree of small

(DSF) and large (DLF) fluctuations are extracted. HEMAX and HEMIN

represent the maximum and minimum values of GHE for negative

and positive orders indicating small and large fluctuations, respectively.

HE0 and HE2 correspond to the values of GHE at q = 0 and q = 2

respectively. DOM is an indicator of multifractality, given by the differ-

ence in GHE between the extremes. DSF and DLF are calculated using

(3) and (4).

DSF = h(q = −5)− h(q = 0) (3)

DLF = h(q = 0)− h(q = 5) (4)

In the TPEHG database, the number of term records is found to be more

than that of preterm records. As a consequence, the classifiers are pro-

found to detect the majority class than the minority class, leading to

bias [1]. Hence, there is a need for data-balancing, which is performed

bythe synthetic minority over-sampling technique (SMOTE). SMOTE is

an over-sampling technique which generates new features from the

existing ones, resulting in a balanced training set. This algorithm

works in the feature space instead of data space [8].

Further, the balanced feature set is checked for normality using the

Quantile–Quantile plot and statistically analysed using the t-test. Two

classifiers namely, Naive Bayes (NB) and logistic regression (LR) are

trained with these features and the performances are analysed using

metrics namely, accuracy, precision and recall.

Results and discussion: The representative uEMG signals recorded

before 26th WOG that lead to term and preterm delivery are shown in

Fig. 1. It is seen that the amplitude of the preterm signal is comparatively

higher than that in term condition. This may be due to an increase in the

strength of uterine muscle contraction towards labour.
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Fig. 1 Representative uEMG signals

The average variation of GHE for increasing orders of the fluctuation

is presented in Fig. 2. It is seen that GHE in term and preterm delivery

signals vary non-linearly with an increase in the orders of fluctuation

and this indicate that uEMG signals are multifractal in nature. Also,

the values of GHE in preterm are higher than that of a term group

which can be due to the existence of more fluctuations in the amplitude

of the signal. The presence of fluctuations is related to frequency and

amplitude changes in a time series.
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The statistical measures of the extracted features are shown in Table 1

and the scatterplots of representative significant features are shown

in Fig. 3. It is inferred that five features namely, HEMAX, HE0, DLF,

DOM and HE2 show statistical significance in differentiating the

signals in term and preterm groups. Conversely, there is no statistical

difference in HEMIN and DSF features. It can be seen that there is an

increase in the average values of HEMAX and HE0 in the preterm

group. This can be due to the increase in smaller fluctuations in the

signal which influence the low-frequency components in the signals.

HE2 denotes the average fluctuation function of a time series where a

higher value corresponds to a more regular signal [6]. It is witnessed

that the value of HE2 in the preterm condition is comparatively higher

than in term group. This increase in regularity could be due to increased

coordination of the uterus muscles. DOM is increased in preterm con-

dition, signifying an increase in the multifractality. This shows that

there is an increase in multifractal characteristics as labour approaches.

DLF is observed to be 0.17 and 0.20 in term and preterm groups,

respectively. It is an indicator of large fluctuations that may occur due

to a significant change in both frequency and amplitude.
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Fig. 2 Representative GHEs with features

a Generalised Hurst exponent, h(q) – term
b Generalised Hurst exponent, h(q) – preterm

Table 1: Statistics of GHE features

Features Min Max Mean(SD) Min Max Mean(SD)

HEMAX* 0.30 0.62 0.49(0.07) 0.40 0.67 0.55(0.06)

HE0* 0.16 0.46 0.33(0.05) 0.30 0.42 0.37(0.03)

HE2* 0.10 0.36 0.27(0.04) 0.22 0.33 0.29(0.03)

HEMIN 0.08 0.29 0.16(0.08) 0.07 0.24 0.17(0.07)

DSF 0.01 0.27 0.16(0.04) 0.10 0.26 0.18(0.03)

DLF* 0.07 0.46 0.17(0.08) 0.09 0.48 0.20(0.07)

DOM* 0.13 0.69 0.33(0.10) 0.19 0.67 0.37(0.09)

*Statistically significant (p < 0.05).
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Fig. 3 Scattergram of representative significant features

a Maximum Hurst exponent, HEMAX

b Zero-order Hurst exponent, HE0

Fig. 4a displays the performance measures of the classifiers trained

with all seven extracted features. It is observed that LR performs

better than NB with a classification accuracy of 96%. Fig. 4b shows

the performance measures of the classifiers trained with five significant

features. It is seen that when only significant features are considered,

there is an increase in the classifiers’ performance. Highest recall of

97% and a precision of 98.5% is achieved using LR classifier.
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Fig. 4 Performance metrics of the considered NB and LB classifiers

a With all the seven extracted GHE features
b With only five significant GHE features

Conclusion: In this study, multifractal characteristics of uEMG signals

are analysed to differentiate term and preterm conditions in the early

stage of pregnancy (second trimester). MFDFA algorithm is

implemented on the uEMG signals to calculate GHE. The results of

GHE prove the multifractal characteristics of uEMG signals. In order

to differentiate the signals, features are extracted from GHE and inves-

tigated. It is found that that there is a rise in multifractality in the preterm

condition which can be due to the synchronisation of action potentials

generated from the uterine cells towards labour. Five features namely,

HEMAX, HE0, HE2, DLF and DOM are able to distinguish signals in

term and preterm groups and can aid in classification. LR classifier

achieved the highest classification accuracy when trained with signifi-

cant GHE features. Hence, it appears that the proposed approach of

using multifractal Hurst exponent features extracted from MFDFA

method, along with the LR classifier, is efficient to classify the uEMG

signals and help in predicting the term or preterm delivery of pregnant

women.
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