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ABSTRACT 
 

The deployment of a complete carbon capture and storage chain requires a focus upon the 

hazards posed by the operation of pipelines transporting carbon dioxide (CO2) at high 

pressure in a dense-phase (supercritical or liquid state). The consequences of an intentional or 

accidental release from such pipelines must be considered as an integral part of the design 

process. There are a number of unique challenges to modelling these releases due to the 

unusual phase-transition behaviour of CO2. Additionally, few experimental observations of 

large-scale CO2 releases have been made, and the physics and thermochemistry involved are 

not fully understood. This work provides an overview of elements of the EC FP7 

CO2PipeHaz project, whose overall aim is to address these important and pressing issues, 

and to develop and validate mathematical models for multiphase discharge and dispersion 

from CO2 pipelines. These are demonstrated here upon a full-scale pipeline release scenario, 

in which dense-phase CO2 is released from a full-bore 36-inch pipeline rupture into a crater, 

and the resulting multiphase CO2

 

 plume disperses over complex terrain, featuring hills and 

valleys. This demonstration case is specifically designed to illustrate the integration of 

different models for the pipeline outflow, near-field and far-field dispersion. 

KEYWORDS 
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, multi-phase flow, experimental measurement, mathematical modelling, pipeline 

depressurisation 

 

 

 

 

 

 



1.  INTRODUCTION 

Carbon capture and storage (CCS) is a set of technologies designed to reduce CO2 emissions 

from large point-sources of production such as coal-fired power stations and other industrial 

facilities. It involves the capture of CO2 and its storage in suitable semi-permanent reservoirs 

such as naturally formed saline aquifers or depleted oil wells, instead of allowing its release 

to the atmosphere where it contributes to climate change. In most of the planned CCS 

projects, the CO2 is transported from the capture to the storage sites in high-pressure 

pipelines, typically operating at pressures above 80 bar, where the CO2

Whilst the physics of high-pressure releases of substances such as natural gas and propane is 

relatively well understood (

 is in either a 

supercritical or liquid state, depending upon whether it is above or below the critical 

temperature of 304.19 K. 

Cowley and Tam, 1988; Richardson and Saville, 1996), CO2 

possesses some unusual physical properties which make its release behaviour more 

challenging to predict. As pure CO2, its triple-point pressure and temperature are 5.18 bar 

and 216.55 K respectively, and at atmospheric pressure CO2 exists in either a solid or 

gaseous state, with a sublimation temperature of 194.25 K. This means that there is likely to 

be complex phase-transition when CO2

2009

 decompresses from an initial dense-phase state in the 

pipeline (i.e. as a supercritical or liquid fluid) into a solid and gaseous state at atmospheric 

pressure. The work undertaken in the EC FP7 CO2PipeHaz project ( ) has been pivotal to 

improving the understanding of this complex phase-transition behaviour and providing more 

accurate predictions of the consequence associated with CO2

CO

 pipeline releases.  

2

NIOSH, 

1996

 is a colourless and odourless gas under ambient conditions, and is toxic if inhaled in air 

at concentrations around 5%, and likely to be fatal at concentrations of around 10% (

). Liquid CO2 has a density approximately 50% less than that of water, but has a 

viscosity of magnitude more frequently associated with gases, and this property makes the 

transport of CO2 an economically viable and attractive proposition. However, preliminary 

calculations and experimental evidence indicate that, due to it possessing a relatively high 

Joule-Thomson expansion coefficient, the rapid expansion of an accidental liquid release may 

reach temperatures below 180 K. Due to this effect, solid formation following a pipeline 

puncture or rupture is to be expected, and subsequently, at atmospheric pressure, the solid 

CO2 will sublime into gas. In assessing the hazards posed by releases of CO2, it is important 

to take account of the fact that the CO2 gas will be much denser than air, due to both its 



higher molecular weight and very low temperature. This could lead to a gravity-driven flow 

of high CO2

The modelling of outflow and subsequent atmospheric dispersion following pipeline failure is 

especially challenging given the large number of complex and often interacting processes 

governing the phenomena involved. The rupture of the pipeline results in a series of 

expansion waves that propagate into the undisturbed fluid in the pipe towards the intact end 

of the pipeline. These waves result in the acceleration of the fluid particles in the opposite 

direction and hence outflow. The precise tracking of these expansion waves and their 

propagation as a function of time and distance along the pipeline is necessary for the accurate 

prediction of the outflow, as well as any propagating fractures within the pipeline material. 

This involves detailed consideration of several processes including heat and mass transfer, 

unsteady fluid flow and thermodynamics (

-concentration gas, which would tend to flow down slopes and accumulate in 

low-lying areas. 

Mahgerefteh et al., 2012a). Additionally, given that 

the transportation of CO2 will undoubtedly occur at high pressure, this means that the near-

isentropic expansion resulting from a pipeline failure will likely induce two-phase flow. The 

modelling of the subsequent dispersion of CO2

This paper describes the development of novel multi-phase pipeline discharge and dispersion 

models applicable to dense-phase CO

 in the atmosphere also poses a number of 

difficulties due to the complex interaction of a number of physical and thermodynamic 

phenomena including the formation of stationary shock-cell structures, phase transition, and 

the behaviour of multi-phase systems. In the case of a full-bore rupture, this will inevitably 

occur within the confines of a crater excavated by the high-pressure release and the geometry 

of this crater will invariably affect the near-field dispersion of the release. Hence, this must 

be considered if suitable source terms are to be provided to the far-field dispersion models. 

Finally, the far-field atmospheric dispersion phenomena can only truly be understood if the 

fluid dynamics of the release are evaluated using a realistic terrain in which the effects of 

gravitational acceleration, buoyancy, wind, turbulence, and the behaviour of the different 

phases are considered. 

2 pipelines, and their validation against recently 

obtained experimental data. The accidental release considered was of pure CO2

2013

, initially at 

150 bar and 283 K, from a pipeline 217 km in length and with an internal diameter of 0.914 

m (36 inches). A full-bore guillotine rupture was modelled, which was assumed to take place 

84 km from the feed-end of the pipeline. Terrain data obtained from the UK Ordnance Survey 

database ( ) was incorporated into the modelling to represent a realistic release scenario. 



2.  VALIDATORY EXPERIMENTAL WORK 

Although it is clearly not possible to validate the overall model which integrates pipe-flow, 

pipe-release, near-field and far-field dispersion modelling, the accuracy of certain elements of 

the models was assessed against large-scale data acquired as part of the project. 

Figure 1 shows a schematic of the rig and the sensor arrays used at INERIS for the 

experimental studies of large-scale CO2

Jamois et al., 2013

 releases. The rig was used to acquire data regarding 

mass flow-rates, and near-field temperature and concentration distributions in a number of 

different release scenarios of varying nozzle sizes and initial pressures. These data have been 

used in the validation of the in-pipe, near-field, and far-field dispersion models, and further 

details can be found in the literature ( ). Part of this validation is discussed 

below, but further information be found in recent CO2PipeHaz project reports (Fairweather et 

al., 2011; Martynov, 2013; Narasimhamurthy et al., 2013). 

In the flow field, the instrumentation consisted of twenty-six, radially distributed 

thermocouples, and six oxygen depletion sensors distributed along the centre-line axis of the 

jet. The region used for the near-field dispersion-model validation extended to 5 m from the 

release plane. This choice of the modelling domain size was due to the near-field model 

developments in this paper being concerned with the accurate representation of under-

expanded, shock-laden, multi-phase jets, and the structure of their initial expansion to 

atmospheric conditions. By 5 m downstream of the release point, the jet has become self-

similar in its properties, and has been at atmospheric pressure for a considerable distance. 

Hence, the modelling of the far-field region does not require such specialist treatment. 

Figure 2 is a schematic of the release vessel, supported by photographs of the assembly 

including the release valve, stop valves, and the discharge orifice. The 2 m3 spherical 

pressure vessel was thermally insulated, and can contain up to 1000 kg of CO2 at a maximum 

operating pressure and temperature of 200 bar and 473 K, respectively. It is equipped 

internally with 6 thermocouples and 2 high-precision pressure gauges, and was connected to a 

discharge line of 50 mm inner diameter, with no internal restrictions. In total, the line is 9 m 

long including a bend inside the vessel, plunging to the bottom in order to ensure that it was 

fully submersed in liquid CO2. Three ball valves were installed in the pipe. Two were 

positioned close to the vessel and the third near to the orifice holder. The first valve closest to 

the sphere was a manual safety valve, and the two others were remotely actuated. All valves 

were full-bore ball valves, sized appropriately for the pipe section. 



The vessel was supported by four Mettler 0745 A load cells, enabling a continuous 

measurement of the CO2

Various orifices were used at the exit plane of the discharge pipe, which were drilled into a 

large screwed flange. Figure 4 is a schematic of such, where the thickness of this flange (E) is 

9 mm for the 6mm orifice and 15 mm for the 25 mm orifice. The diameter of the orifice (ĭ) 

is constant over a length of 5 mm or 10 mm (e) and then expands with an angle of 45° 

towards the exterior. 

 content with an uncertainty of plus or minus 0.5 kg. The 

determination of the mass flow-rate was performed within an accuracy of approximately 

10%, mainly due to the noise present in the measurement signal during the release. These 

obtained measurements have been used to assist in the validation of the pipe out-flow models. 

In the sphere, the pressure was measured using a Piezoresistive type KISTLER 4045 A 200 

sensor with a range of 0 to 200 bar and an accuracy of plus or minus 0.1%. This sensor was 

mounted directly to the flange of the sphere, as shown in Figure 3. Another Piezoresistive 

type KISTLER 4045 A 500 sensor, with a range of 0 to 500 bar, was connected to the sphere 

and served as a backup. The internal temperature of the vessel was measured at 6 points on 

the vertical axis of the sphere using 1mm sheathed, type K thermocouples, with an accuracy 

of plus or minus 0.25 K. Temperature immediately upstream of the orifice was similarly 

measured. The static pressure immediately upstream from the orifice was measured using a 

KULITE 0-350 bar instrument with an accuracy of ±0.5%. The vessel instrumentation is 

shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 



3.  IN-PIPE AND RELEASE-CONDITION MODELLING 

3.1 Modelling Approach 

To date, the majority of the pipeline outflow models reported in the literature have utilised 

the homogeneous equilibrium model (HEM) (Mahgerefteh et al., 1999; Mahgerefteh and 

Wong, 1999; Popescu, 2009; Webber et al., 1999) where the constituent fluid phases are 

assumed to remain in thermal and mechanical equilibrium during the decompression process. 

In contrast to the HEM, the homogeneous relaxation model (HRM) accounts for the delay in 

vaporisation during the decompression process using an empirical relaxation equation for the 

mass fraction of vapour phase, while assuming that the constituent phases are in mechanical 

equilibrium, i.e. that they move at the same velocity. In the HRM, the mass, momentum, 

energy and vapour quality conservation equations are respectively given by (Brown et al., 

2013): 

( ) 0u
t x

ρ ρ∂ ∂
+ =

∂ ∂
 (1) 

( ) ( )
2

2 wf u
u u p

t x d

ρρ ρ∂ ∂
+ + = −

∂ ∂
 (2) 

( ) ( )( )
2

wf u
E u E p u

t x d

ρρ∂ ∂
+ + =−
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 (3) 

( ) ( ) equ
t x

α α
ρα ρ α ρ

τ
−∂ ∂

+ =
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 (4) 

where ρ , u , p , d , wf , α , and τ  are respectively the mixture density, velocity, pressure, 

pipeline diameter, Fanning friction factor calculated using Chen’s correlation (Chen, 1979), 

the dynamic vapour quality and a relaxation time accounting for the delay in the phase 

change transition as functions of time, t , and space, x . E  represents the total mixture energy 

defined as: 

21

2
E e uρ  = + 

 
 (5) 

where e  is specific internal energy of the mixture:  

( ) ( )1sv mle e p eα α= + −  (6) 



and ρ  is the mixture density given by: 

( )
( )
( )

11

,sv ml mlp p e

αα
ρ ρ ρ

−
= +  (7) 

In equations (6) and (7), the subscripts sv  and ml  respectively refer to the saturated vapour 

and meta-stable liquid phases, which may be at different temperatures. 

Based on experimental data on steady flow of CO2

τ

 through a nozzle, the following 

correlation for the relaxation time was proposed (Angielczyk et al., 2010): 

( )
( )

1.760.54

72.15 10 s in

sv c s in

p T p

p p T

ρτ α
ρ

−−

−  − 
= ×     −   

 (8) 

where, inT  is the feed temperature.  ρ ,  p ,  cp , svρ  and sp  are respectively the mixture 

density, fluid pressure, critical pressure, saturated vapour density at the given pressure and 

the saturation pressure at the given temperature. 

In order to close the above model, an equation of state is required to predict the phase 

equilibria and thermodynamic properties of CO2

Soave, 1972

. A number of common cubic equations of 

state, e.g. the Soave-Redlich-Kwong (SRK) ( ) and the Peng-Robinson (PR) 

(Peng and Robinson, 1976) equations of state were employed for this purpose in modelling 

pipeline decompression (Mahgerefteh et al., 2012a; Mahgerefteh et al., 2012b; Munkejord et 

al., 2010). However, given the importance of accurate predictions of the thermodynamic 

properties, a highly accurate thermodynamic model based on the Perturbed Chain-Statistical 

Associating Fluid Theory (PC-SAFT) equation of state, described further below, was 

developed by NCSR Demokritos as part of the CO2PipeHaz project (Diamantonis and 

Economou, 2011). To investigate the impact of the choice of the equation of state in the 

modelling of the CO2 releases considered in this work, the two cubic equations of state 

mentioned earlier and the PC-SAFT equation are used here in validation studies. This is 

conducted by the integration of the Physical Properties Library (PPL) software package 

incorporating the various equations of state, with the outflow model. This coupling is 

undertaken using an interface developed by the CO2PipeHaz partners at NCSR Demokritos, 

and further discussed in Section 4. 



The HRM has recently been applied to the modelling of CO2

Brown et al., 2013

 discharge following full-bore 

rupture of pipelines ( ) where it was shown to produce reasonable 

agreement in comparison with available experimental data. As a further validation, this model 

has been applied to predict outflow from pipelines with small diameter punctures. For 

modelling purposes, a pipeline with an orifice at the release end is considered as depicted in 

Figure 5. 

Given that the model described by equations (1) to (4) can only be solved numerically, an 

operator splitting method is used (LeVeque, 2002). This method breaks the solution down 

into two steps: firstly the conservative left-hand-side of equations (1) to (4) are solved using 

an upwind, flux differencing scheme based on the Harten, Lax, van Leer (HLL) approximate 

Riemann solver (Harten et al., 1983). Secondly, this solution is updated by solving a system 

of ordinary differential equations incorporating the expressions on the right-hand-side of 

equations (1) to (4). Full details of the algorithm are described in Brown et al. (2013). 

 

3.2 Validation, Results and Discussion 

The model described above has been applied to the simulation of flow through the 

experimental apparatus described in Section 2. Table 1 summarises the conditions of two 

tests chosen for the model validation in the present work. As can be seen from this table, the 

tests were performed using release orifices of two different diameters and two different initial 

vessel pressures and temperatures. Given that the focus of this study was to replicate the 

steady release through a puncture in a pipeline, the vessel initial pressures were assumed to 

be constant and simulations were run until a steady release rate was obtained.  

Table 2 shows the mass flow rate, pressure drop from the reservoir, temperature and density 

of the CO2 fluid at the release orifice, as predicted by the outflow model using the PR, SRK 

and PC-SAFT equations of state respectively for Test 2, as well as the measured mass flow 

rate. It can be seen that the results obtained using the PR equation are the most conforming 

with experimental observation with respect to prediction of the mass flow rate, while both the 

SRK and PC-SAFT equations slightly under-predict the experimental values. Similarly, a 

lower release pressure is obtained with the PR as compared to the SRK and PC-SAFT 

equations, while the SRK predicts a markedly lower density. Interestingly, all predictions 



indicate that the CO2

Table 3 shows both the predicted release properties and the measured data for Test 8. In this 

case only the PR and SRK equations were used as the larger diameter caused stability 

problems when using the PC-SAFT equation of state. Similarly to the discussion in respect to 

the predictions and data presented in Table 2, the PR equation of state gives the best 

agreement with experimental data, although it does slightly over-predict the measured mass 

flow-rate. 

 remains liquid within the pipe section, with flashing subsequently 

occurring at the orifice. 

 

3.3 Hypothetical Pipeline Release with Realistic Terrain 

The hypothetical case considered involved the full-bore guillotine rupture at 84 km from the 

feed end of a 914.4 m (36 inch) internal diameter, 217 km pipeline transporting pure CO2 at 

150 bar and 283 K. Along the pipeline length there were assumed to be two emergency 

shutdown valves placed at 23 km and 127 km from the feed end of the pipeline respectively, 

which are activated at 800s following the failure at a rate of 2.56 cm s-1. Furthermore, the 

simplifying assumption was made that prior to the release the CO2

Two sets of outflow calculations were performed using the PR equation of state. The first 

case accounted for a realistic topography of the pipeline as shown in Figure 6, while in the 

second case a horizontal pipeline indicating a flat terrain was modelled. Figure 7 shows a 

comparative plot of the depressurisation history, in terms of the pressure at the release point, 

for both the cases studied for the upstream section of the pipeline. As can be seen, the 

resulting outflow predictions are relatively insensitive to the differences in pipeline 

inclination. There are only minor differences in the release pressures predicted in the initial 

stages, although these differences become more significant towards the end of the simulation. 

Figure 8 shows the variation of predicted release pressure for the downstream section for both 

the above cases. Again, there is no significant difference in the pressure histories for both 

cases which indicates the insignificance of the inclinations on the release data. For both cases 

 fluid was stagnant in the 

pipeline. In simulations the closed-end boundary conditions were applied at both ends of the 

pipeline. It should be noted that the due to the length of the pipeline and the closure time of 

the valves used, the interaction of the flow with boundary conditions is expected to be 

minimal. 



the predicted release pressure is approximately 7 bar by the end of the simulation. Finally, 

Figure 9 shows the total predicted discharge rate variation, from both ends of the pipeline, 

plotted against time for both cases. The flow rate predicted for the two cases is coincidental 

over much of the simulation duration. This result indicates that for the given terrain, the 

variation of the pipeline inclination has a small effect on the release. This lack of impact is 

explained by the relatively small contribution of the hydrostatic head to the total pressure in 

the pipeline during the initial period of its depressurisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.  THERMODYNAMIC PROPERTY MODELLING 

Accurate and efficient prediction of thermodynamic properties of pure CO2 and its mixtures 

with non-condensable gases of interest to CCS is key to successful modelling of accidental 

CO2

Tsangaris et al., 2013

 releases from pressurised transportation pipelines. The Physical Properties Library 

(PPL) ( ) developed by NCSR Demokritos encapsulates a variety of 

thermodynamic methods capable of predicting these properties as functions of temperature, 

pressure and composition. Existing models applicable to CO2

2013

 transportation conditions have 

been recently reviewed by Diamantonis et al. ( ). The PPL can predict properties such as 

density, fugacity, enthalpy, and viscosity using empirical, semi-empirical and theoretical 

models available in the literature or recently developed for CO2

Thermodynamic models for pure components and mixtures are often based on pure 

component constants such as molecular weight, critical properties, or an acentric factor. The 

PPL has an internal database that stores these pure component values and model parameters, 

and hence physical properties of pure components such as liquid density, heat capacity, speed 

of sound, and Joule-Thompson coefficient can be calculated by a number of different models 

available in the literature. The PPL supports the most popular models available including 

equations of state and empirical equations. It also supports the prediction of CO

 within the scope of this 

work.  

2

For CO

 mixture 

properties using popular models.  These include cubic equations of state such as Redlich-

Kwong (RK), Soave-Redlich-Kwong, and Peng-Robinson, specialized equations of state such 

as GERG, and advanced equations of state such as SAFT, PC-SAFT, and tPC-PSAFT.  

2 and CO2

• Volumetric (density, compressibility) 

 mixtures, the PPL can be used to obtain the following properties: 

• Energy related (enthalpy, entropy, heat capacity) 

• Free energy (Gibbs, fugacity) 

• Derivative (Joule-Thomson, speed of sound) 

• Transport (viscosity, diffusivity, thermal conductivity) 

and the equilibrium properties can be obtained using the following methods: 

• Cubic equations of state (RK, SRK, PR) 

• Specialized equations of state (GERG) 



• Advanced equations of state (SAFT/PC-SAFT/tPC-PSAFT) 

• Empirical and semi-empirical models 

The end user can select the desired method of calculation and the physical property of interest 

through appropriate library ‘calls’ and ‘options’ as described in the published Advanced 

Programming Interface (Tsangaris et al., 2013). 

 

4.1 SAFT and PC-SAFT Equations of State 

The focus of this work has been the development of accurate thermodynamic models for pure 

CO2

( )R hs disp chain assocA A A A A= + + +

 and its mixtures with non-condensable gases for the temperature range of interest, based 

upon the SAFT family of equations of state. These equations of state combine an increase in 

accuracy compared to the cubic methods, and a reduced computational overhead compared to 

specialized formulations such as GERG. A brief description of SAFT follows. It is written as 

a summation of residual Helmholtz free energy terms that occur due to different types of 

molecular interactions in the system under consideration. This can be expressed as: 

 (9) 
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where AX  is the fraction of molecules that have not formed a hydrogen bond at position A, 

ΑΒ∆  is a function describing the strength of the hydrogen bond that forms between points A 

of a molecule and the position B of another molecule, and ( )seg
g d  is the radial distribution 

function of hard spheres. m  is the number of spherical segments in a molecule, τ =0.74048, 

C =0.12, ijD  are the global constants of the Adler equation, oov  the characteristic volume of 

a molecule segment, and M  is the total number of positions on a molecule for hydrogen 

bond formation 

The difference between the SAFT and PC-SAFT equations of state is the dispersion term, 

which for PC-SAFT is expressed as: 
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while ia  and ib  are functions of the chain length given as: 
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and hsZ  is the compressibility factor of hard spheres. Figure 10 is a graphical depiction of the 

molecular elements of the method. 

The parameters used in SAFT and PC-SAFT are three for normal compounds, and two more 

for associating. Also there is one binary mixture coefficient that is used to correlate data and 

calculations for mixtures. Pressure and chemical potential occur as analytical derivatives of 

the residual Helmholtz energy from the previous equation set. 

In SAFT and PC-SAFT, the hard-sphere, chain, and association terms can be extended to 

mixtures using the standard methodology. Thus, mixing rules are only required for the 

dispersion term. A mixing rule for the segment number m  is given by the expression: 

( )∑∑ +=
i j

jiji mmxxm
2

1
 (24) 

Also, a second mixing rule for the dispersion energy parameter ku  based on the van der 

Waals one-fluid theory can be used which is based on the expression: 
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 Another mixing rule, based on volume fractions, has also been proposed: 
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Both mixing rules are based on the assumption that the local and the bulk composition of the 

fluid are similar. 

 



 

 

4.2 Validation, Results and Discussion 

The PPL and especially the newly developed SAFT-based equation of state applicable to pure 

CO2

Initially, the models were validated with respect to fluid phase equilibria (

 and its mixtures was developed and tested within the scope of the CO2PipeHaz project. 

Direct comparison between SAFT predictions, experimental data and other classical equation 

of state predictions was used in the validation of the new equation. Validation included a 

variety of components, conditions and physical properties of interest to CCS. 

Diamantonis and 

Economou, 2012; Tsangaris et al., 2013), and binary and ternary mixtures of CO2

Diamantonis and Economou, 2011

 with non-

condensable gases were studied at pipeline transportation conditions. Subsequently, single 

phase volumetric, energy related, and the derivative properties were examined. The PPL 

calculates derivative property values analytically whenever possible. For some cases 

however, analytical differentiation of the equation of state is not possible and numerical 

differentiation is used instead. The derivative properties of interest to this work are the heat 

capacities (isobaric and isochoric), the speed of sound, the Joule-Thomson coefficient, the 

isothermal compressibility coefficient and the thermal expansion coefficient, as given in 

Table 4. These quantities can be derived from the equation of state and greatly affect the 

predictions of rate of pipeline depressurization during accidental release. As a result, accurate 

modelling is critical to hazard identification studies, and prediction and validation of the 

derivative properties has been documented ( ; Diamantonis 

et al., 2013). Finally, the newly proposed equation of state combined with existing semi-

empirical transport-property models were validated for viscosity and the self-diffusion 

coefficient.  

Figure 11 is a typical example of the improved capacity of the newly developed SAFT 

equation of state in the prediction of the isothermal compressibility of multi-component 

systems. Experimental data for derivative properties of complex mixtures are scarce in the 

literature. Amongst what is available (Alsiyabi et al., 2012), the CO2-N2-CH4-H2 system was 

selected due to it resembling candidate CO2 pipeline mixtures better. Figure 11 compares 

predictions obtained from the Peng-Robinson and the newly developed PC-SAFT equations 

of state, and PC-SAFT displays a notably superior average absolute deviation error of 5.3 % 



against 33.2 % for the classical approach. It should be emphasized that no tuning to 

isothermal compressibility data has been undertaken in the construction of any model. The 

improved capacity of PC-SAFT is attributed more to the fact that the mathematical terms 

resemble the physical interactions more closely, and less to the fact that PC-SAFT has 

slightly more complex functional form and an extra adjustable parameter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5.  NEAR-FIELD MULTI-PHASE DISPERSION MODELLING 

5.1 Turbulent Flow Calculations 

Predictions were based on the solutions of the Favre-averaged, density-weighted forms of the 

transport equations for mass, momentum, and total energy (internal energy plus kinetic 

energy), as described below by equations 27, 28, and 29 respectively: 
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Representation of the Reynolds stresses ( 
i ju u′′ ′′ ), and hence the closure of this equation set, 

was achieved via the k ε−  turbulence model (Jones and Launder, 1972). Solutions of the 

time-dependent, axisymmetric forms of the descriptive equations were obtained using a 

modified version of an in-house general-purpose fluid dynamics code. Integration of the 

equations employed a second-order accurate, upwind, finite-volume scheme in which the 

transport equations were discretised following a conservative control-volume approach, with 

values of the dependent variables being stored at the computational cell centres. 

Approximation of the diffusion and source terms was undertaken using central differencing, 

and an HLL (Harten et al., 1983), second-order accurate variant of Godunov’s method 

applied with respect to the convective and pressure fluxes. The fully-explicit, time-accurate 

method was a predictor-corrector procedure, where the predictor stage is spatially first-order, 

and used to provide an intermediate solution at the half-time between time-steps. This is then 

subsequently used at the corrector stage for the calculation of the second-order fluxes. A 

further explanation of this algorithm can be found elsewhere (Falle, 1991). 

The calculations also employed an adaptive finite-volume grid algorithm which uses a three-

dimensional rectangular mesh with grid adaption achieved by the successive overlaying of 



refined layers of computational mesh. Figure 12 demonstrates this technique in a two-

dimensional planar calculation of the near-field of a sonic CO2

Wareing et al., 2013

 release. Where there are steep 

gradients of variable magnitudes such as at flow boundaries or discontinuities such as the 

Mach disc, the mesh is more refined than in areas such as the free stream of the surrounding 

fluid. The model to describe the fluid flow-field employed in this study was cast in an 

axisymmetric geometry for the validatory calculations of jet releases. A full three-

dimensional scheme was applied to the crater calculations although the use of symmetry 

boundaries aided a reduction in computational expense. A full description of the equations 

solved is reported elsewhere ( ) 

Although the standard k-İ model has been extensively used for the prediction of 

incompressible flows, its performance is well known to be poor in the prediction of their 

compressible counterparts. The model consistently over-predicts turbulence levels and hence 

mixing due to compressible flows displaying an enhancement of turbulence dissipation. A 

number of modifications to the standard k-İ model have been proposed by various authors, 

which include corrections to the constants in the turbulence energy dissipation rate equation 

(Baz, 1992; Chen and Kim, 1987), and to the dissipation rate itself (Sarkar et al., 1991; 

Zeman, 1990). Previous works by one of the present authors (Fairweather and Ranson, 2003, 

2006) have indicated that for flows typical of those being studied here, the model proposed 

by Sarkar et al. (1991) provides the most reliable predictions. This model specifies the total 

dissipation as a function of a turbulent Mach number and was derived from the analysis of a 

direct numerical simulation of the exact equations for the transport of the Reynolds stresses in 

compressible flows. This approach was incorporated into the modelling described herein. 

 

5.2 Non-ideal Equation of State 

The Peng-Robinson equation of state (Peng and Robinson, 1976) is satisfactory for predicting 

the gas-phase properties of CO2 1996, but when compared to that of Span and Wagner ( ), it is 

not so for the condensed phase. Furthermore, it is not accurate for gas pressures below the 

triple point and, in common with any single equation, it does not account for the discontinuity 

in properties at the triple point. In particular, there is no latent heat of fusion. 

Span and Wagner (1996) give a formula for the Helmholtz free energy that is valid for both 

the gas and liquid phases above the triple point, but it does not take account of experimental 



data below the triple point, nor does it give the properties of the solid. In addition, the 

formula is too complicated to be used efficiently in a computational fluid dynamics code. A 

composite equation of state was therefore constructed to determine the phase equilibrium and 

transport properties for CO2

Wareing et al., 2013

. The inviscid version of the overall model is presented in detail 

elsewhere ( ) and the method considered here is extended for the turbulent 

closure of the fluid-flow equations detailed in the previous section. In this, the gas phase is 

computed from the Peng-Robinson equation of state (Peng and Robinson, 1976), and the 

liquid phase and saturation pressure are calculated from tabulated data generated with the 

Span and Wagner (1996) equation of state and the best available source of thermodynamic 

data for CO2

DIPPR, 2013

, the Design Institute for Physical Properties (DIPPR) 801 database, access to 

which can be gained through the Knovel library ( ). To calculate the solid 

density, the same approach as Witlox et al. (2009) is used, and expressed as: 

31289.45 1.8325T kg mρ −= +  (30) 

again based on property information from the DIPPR 801 Database. From Liu (1984), the 

sound speed in solid CO2 at atmospheric pressure and 296.35 K is 1600 m s-1

Figure 13 shows the predicted internal energy of the gas and condensed phases on the 

saturation line. The transition from liquid to solid was smoothed over 4 K with a hyperbolic 

tangent function centred on the triple point. This was done for computational reasons in order 

to ensure the function and its differentials are smooth. 

 and it is 

assumed that this is independent of temperature and pressure. Note that the results given 

below are extremely insensitive to the solid density and sound speed. The saturation pressure 

above and below the triple point is taken from Span and Wagner (1996).  

Calculations of the thermodynamics in the pure CO2 system indicated that in this case, little 

difference was observed between results obtained using the approach described above, and 

that presented in Section 4. Hence, for the unique case of a pure CO2 release, the composite 

non-ideal equation of state was used in the form of look-up tables to increase computational 

efficiency. It will be essential to apply the more advanced equations of state such as PC-

SAFT when considering systems containing mixtures of CO2

 

 with impurities. 

5.3 Homogeneous Equilibrium and Relaxation Models 



In an HEM, all phases are assumed to be in dynamic and thermodynamic equilibrium. Id est 

they all move at the same velocity and have the same temperature. In addition, the pressure of 

the CO2 vapour is assumed to be equal to the saturation pressure whenever the condensed 

phase is present. The pressure of the condensed phase CO2 is assumed to be equal to the 

combined pressure of CO2

The assumptions associated with the HEM are reasonable provided the CO

 vapour and air (the total pressure).  

2

Woolley et al., 2013

 liquid droplets or 

solid particles are sufficiently small. There are some indications that this may not be true, in 

particular for test calculations in which the release is from a nozzle with a diameter of the 

order of centimetres. Hence, the model was further developed as an HRM, in that a relaxation 

time was introduced with respect to the transport of the dense phase. This has the effect of 

numerically representing the time taken for the dense phase to attain dynamic equilibrium 

with the fluid phase. Again, a full description of both the HEM and HRM can be found 

elsewhere ( ). 

 

5.4 Code Validation against CO2

Figure 14 depicts centreline predictions of temperature and O

 Release Data 

2 molar concentration plotted 

against experimental data for Test 2 at axial locations of 2, 3, 4, and 5 m. This test was 

undertaken using the 6 mm nozzle, and predictions can be seen to be in good agreement with 

observation. A slight over-prediction of temperature is observed in the very near-field, 

leading to a similarly slight under-prediction further downstream. However, predictions 

remain well within an acceptable range of experimental error. Again with reference to Figure 

14, this over-prediction of temperature is translated into a slight over-prediction of O2

In addition, Figure 15 shows predictions of radial temperature profiles plotted against 

experimental data for Test 8, performed by INERIS, at axial locations of 1, 2 and 5 m. The 

model qualitatively and quantitatively captures the thermodynamic structure of the sonic 

releases, and although there is a small discrepancy with the observed and predicted spreading 

rates in the very near-field, calculations lie within the accepted error range of the 

experimental data. Results obtained from calculations of two further tests, Tests 6 and 7 (not 

shown), were seen to be of a similar level of agreement to Test 8. Further discussion 

 

concentration, at an axial location of 1 m. 



regarding this validation exercise, and the results obtained, can be found in Woolley et al. 

(2013). 

 

5.5 Crater Calculation Geometry and Sample Results 

Figure 16 shows the chosen geometry of the crater formed after the pipeline guillotine 

rupture. This geometry was chosen, based upon incident data for natural gas pipelines taken 

from the literature (Kinsman and Lewis, 2002; McGillivray and Wilday, 2009). 

This geometry was incorporated into a three-dimensional model for predicting the near-field 

dispersion characteristics, and Figure 17 shows an example of such a set-up in which one 

quarter of the crater has been modelled by applying appropriate symmetry boundaries. Figure 

17 (a) depicts a cut along the centreline on the y-axis, which lies along the centre of the 

release pipe at x=0. The z dimension represents the crater depth, and symmetry boundaries 

are located at x=0 and y=15 m. Figure 17 (b) is looking down on to a plane in the x 

dimension, bisecting the pipe at a depth of 1.5 m. The symmetric left boundary at x=0 can 

also be seen to bisect the pipe. As previously mentioned, the uppermost boundary at y=15 m 

is also symmetric, and represents the companion jet release in a symmetrical full-bore release 

scenario. 

Figure 18 shows sample predictions of a typical release obtained from the application of this 

crater geometry, with initial conditions (pressure, temperature, density, velocity, and phase 

composition) provided by the pipe outflow model described earlier. The flow is modelled as a 

steady state, using the predicted conditions at the pipeline orifice 30 seconds after the start of 

the release, following the methodology proposed for modelling transient pipeline releases by 

Carter (1991), and Bilio and Kinsman (1997). Dense-phase CO2 mass fraction and total 

velocity predictions are presented, and the features of such a highly under-expanded jet can 

be seen, including the formation of a Mach disc, and the acceleration of the flow to 

supersonic velocities. Figure 19 and Figure 20 depict predictions of the full-bore release on a 

section located just above ground level and on a plane orthogonal to the z axis at 0.01 m. 

Figure 19 shows mixture fractions of total CO2, solid CO2, air, and gas, and overall density 

and temperature. Figure 20 shows the velocity components, total velocity, turbulence kinetic 

energy, and turbulence kinetic energy dissipation rate. To interface these results from the 

near-field model with the far-field dispersion models, described below as FLACS and 



ANSYS-CFX, equivalent point-source boundary conditions were calculated by integrating 

the data shown in Figures 19 and 20 within an envelope defined by a CO2

These source terms were subsequently used for far-field dispersion calculations undertaken 

by partners HSL and GexCon AS, and reported upon in Section 6. 

 concentration of 

0.1%. The resulting integrated source values are as given in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6.  FAR-FIELD MULTI-PHASE DISPERSION MODELLING 

Far-field modelling of the dispersion of two-phase (gaseous and particulate) CO2

ANSYS, 2011

 was 

undertaken using two different commercial computational fluid dynamic codes:  FLACS 

(GexCon AS, 2013); and ANSYS-CFX ( ). In both cases, the continuous gas-

phase was solved in the Eulerian reference frame, while a Lagrangian formulation was used 

for the dispersed particle phase. In addition, both far-field models employed the same source 

boundary conditions, where the CO2 jet conditions at the inlet plane were taken from the 

near-field dispersion model outputs, as described above, which consisted of integrated planar 

profiles of velocity, temperature, CO2

 

 solid and gas concentration, turbulence kinetic energy 

and turbulence dissipation rate. Distinct features of each of the individual codes are given 

below. 

6.1 ANSYS-CFX  

The CFX dispersion model for two-phase CO2

ANSYS, 2011

 releases used the Lagrangian particle-tracking 

model in ANSYS-CFX version 14 ( ). The process of sublimation was 

simulated using the standard evaporation model, with suitable Antoine equation coefficients 

for solid CO2 sublimation. Drag between the CO2

Schiller and Naumann (1933

 particles and the surrounding gas phase 

was calculated using the drag model of ) combined with the 

stochastic dispersion model of Gosman and Ioannides (1981) to account for turbulence 

effects. Heat transfer between the gaseous and solid phases was modelled using the Ranz-

Marshall correlation (Ranz and Marshall, 1952) and turbulence effects in the gas phase were 

modelled using the Shear-Stress Transport (SST) model of Menter (1994). 

To account for the effects of ambient humidity, the modelled gas phase was composed of a 

mixture of three components: dry air, CO2

Brown and Fletcher (2005

, and water vapour, each of which was treated as 

an ideal gas. An additional dispersed-droplet Eulerian phase was used to account for 

condensed water droplets, which were assumed to have the same velocity as the surrounding 

gas phase. Source terms in the continuity and energy conservation equations were used to 

model the process of water vapour condensation and evaporation. ) 



previously demonstrated a similar approach to the modelling of atmospheric plumes from 

alumina refinery calciner stacks. It is useful to model humidity not only in terms of its effect 

on the dispersion behaviour, but also to provide predictions of condensed water droplet 

concentration, from which the plume visibility can be inferred. The visibility of the CO2

The computational grids used with CFX in the present work were unstructured, using both 

tetrahedral and prism-shaped cells. Previous tests have shown that relatively fine grids are 

needed to resolve the sublimation process in two-phase CO

 

plume has important practical implications for emergency planning and risk assessment. 

2

The near-field dispersion model outputs do not currently include predictions of the CO

 jets and therefore in excess of 3 

million nodes were used in the CFX simulations presented here. 

2 

particle size, which is an important input for the Lagrangian two-phase dispersion model. The 

size of the solid CO2 particles produced by dense-phase CO2 releases is uncertain, and it 

cannot be measured reliably in large-scale releases. However, previous work has shown that 

homogeneous equilibrium dispersion models provide reasonably good predictions of 

temperatures and concentrations in dense-phase CO2

Dixon et al., 2012

 jets produced by orifices up to 50 mm 

in diameter ( ; Witlox et al., 2012). These models assume that the particles 

have the same temperature and velocity as the surrounding gas phase, which implies that the 

particles must be very small. Analysis of CO2 particle sizes by Hulsbosch-Dam et al. (2012) 

has also suggested that their initial diameter once the jet has expanded to atmospheric 

pressure should be in the range 1-20 ȝm. In the present work the CO2

At the far-field boundaries, logarithmic wind velocity profiles and turbulence levels were 

specified using the approach described by Richards and Hoxey (

 particles are assigned 

an initial uniform diameter of 20 ȝm at the inlet plane, and their diameter subsequently 

reduces as they sublimate.  

1993). For the thermal 

boundary conditions, it is assumed that the stability of the atmospheric boundary layer is 

neutral.  

Further information on the CFX dispersion model for two-phase CO2

2012

 releases can be found 

in the work of Dixon et al. ( ). 

 

6.2 FLACS 



In the current study, two-phase CO2

Ichard, 2012

 dispersion phenomena in FLACS (GexCon AS, 2013) 

are modelled using an Euler-Lagrangian method ( ). The numerical particles are 

modelled as point-particles (Loth, 2000), with the particles considered incompressible, non-

reacting, and spherical in shape. Particle sizes are further represented by a uniform 

distribution. The governing equations solved for the continuous gas phase are the 

compressible form of Reynolds-averaged Navier-Stokes equations, where turbulence is 

modelled using a standard k-İ model (Launder and Spalding, 1974). A two-way coupling 

between the continuous gas-phase and the dispersed particle-phase is established through 

source terms in the mass, momentum, and energy equations (Peirano et al., 2006). In 

addition, particle-turbulence interaction is accounted for by special source terms in the 

turbulence kinetic energy and the dissipation rate of turbulence kinetic energy equations 

(Mandø et al., 2009). 

A simplified form of  the original equation of Maxey and Riley (1983) is used for the particle 

momentum equation, where the simplification is based on the analysis of Armenio and 

Fiorotto (2001) for a wide range of particle-fluid density ratios. In the present particle 

momentum equation, both the buoyancy force and the drag force were considered, while the 

added-mass force and the Basset history force were ignored since they are negligibly small 

when compared to the drag force (Armenio and Fiorotto, 2001). In addition, the pressure-

gradient force term was also omitted, since its influence is small in large particle-fluid density 

ratio problems (Armenio and Fiorotto, 2001). The instantaneous fluid velocity seen by the 

particle, which is an unknown parameter in the particle momentum equation, is modelled 

through stochastic differential equations. A modified Langevin equation derived by Minier 

and Peirano (2001) was used for this purpose. 

Particle deposition and interaction with obstacles was modelled (Crowe, 2005), while 

particle-particle interactions such as collisions, breakup and coalescence were not taken into 

account. In addition, humidity effects were not considered in the present version of the 

Lagrangian particle-tracking model. 

The governing equations were solved on a staggered Cartesian grid using a finite-volume 

method. The solver for both the continuous phase and the dispersed phase was second-order 

accurate. A central-differencing scheme is used for the diffusive fluxes, while a hybrid 

scheme with weighting between upwind and central-differences was employed for the 

convective fluxes. Time-marching was carried out using an implicit backward-Euler scheme 



and the discretized equations were solved using a BICGStab iterative method with the 

SIMPLE pressure correction algorithm (Versteeg and Malalasekera, 2007). Readers are 

referred to Ichard (2012) for further information concerning FLACS Lagrangian particle-

tracking model and its validation. 

 

6.3 Implementation of Realistic Terrain and Boundary Conditions 

The realistic terrain employed was obtained from UK Ordnance Survey data and incorporated 

into the FLACS and CFX models, as shown in Figure 21. The length and width of the domain 

size in each case is 10 km and 5 km respectively. The FLACS domain extended to a height of 

approximately 1 km, whilst a lesser height was used in CFX, which varied from 260 m to 610 

m depending upon the location. The computational grids used in the two codes were very 

different as FLACS employed a multi-block Cartesian mesh with 2.7 million grid points, 

whilst CFX used an unstructured grid of 3.2 million nodes that was composed of mainly 

tetrahedral cells, with prism-shaped cells along the solid boundaries. 

 

For the dispersion model boundary conditions, the CO2 source from the crater was specified 

using the conditions given in Table 5. For the turbulence source conditions in FLACS, a 

relative turbulence intensity of 0.1985 and turbulence length scale of 0.034 m, obtained from 

averaged k and ご values in Figure 20, were used. In both the FLACS and CFX models, the 

CO2 particles were assigned an initial uniform diameter of 300 µm and 20 µm, respectively. 

The likely size of particles produced in dense-phase CO2 releases is largely unknown, 

certainly for releases of the scale considered here, as discussed earlier. In addition, the initial 

temperature of the CO2 particles in the FLACS simulation was set to the sublimation 

temperature of 194.25 K. For the upwind boundary condition, logarithmic cross-wind 

velocity profiles were used with a reference speed of 2 m s-1 for the FLACS simulations and 

5 m s-1 for the CFX simulations, at a reference height of 10 m. Both models assumed Pasquill 

class type D (neutral) atmospheric stability and a ground roughness of 0.1 m, suitable for 

rural roughness with low crops and occasional large obstacles. The ambient temperature was 

283 K, and for a maximum depressurisation time of 200 seconds, the total mass discharge 

predicted by the pipeline outflow model was approximately 2700 tonnes. Therefore, with 

reference to the mass flow rate in Table 5, the release duration was approximately 138 

seconds, and the FLACS simulations were performed for a release over this period using a 



transient solver. Following the release cut-off, the dispersion calculations were simulated for 

a further 400 seconds. In contrast, the CFX simulations were performed using a steady solver, 

and the results therefore provide predictions assuming that the release was prolonged. 

 

6.4 Results and Discussion 

The predicted CO2 jet in the vicinity of the crater is shown in Figure 22 for the FLACS and 

CFX models. Owing to the smaller particle-size used in the CFX simulations, it was found 

that all of the particles sublimated within the airborne jet, and these particle trajectories are 

shown in the right-hand plot of Figure 22. In contrast, the larger initial particle-size 

prescribed in the FLACS simulations resulted in some solid-CO2 mass raining-out on to the 

terrain. Towards the end of the FLACS simulation, it was recorded that approximately 20% 

of the total mass discharged, at around 550 tonnes, had rained-out on the ground. This result 

suggests that banks of solid CO2 might be formed in CO2

 

 pipeline releases if particles with 

diameters of the order 300 µm or larger are produced in the jet leaving the crater. 

Figure 23 shows the steady-state cloud predicted by the CFX model. These predictions are 

shown using three different CO2 mean concentration levels to define the edge of the cloud: 

1%, 2% and 4% v/v. For these three cases, the cloud extends to approximately 5 km, 4 km, 

and 2 km respectively. At low concentrations of 1% or 2%, CO2 is considered not harmful 

but these concentrations may correlate to the extent of the visible cloud due to condensed 

water vapour (i.e. mist). A concentration of 4% v/v CO2

1996

 corresponds to the Immediately 

Dangerous to Life and Health (IDLH) value recommended by NIOSH ( ). The CFX 

results show that even with a wind speed of 5 m s-1, the presence of the terrain has a large 

effect on the dispersion of the CO2

 

 cloud, and rather than being blown downwind, the cloud 

spreads mostly in the lateral directions, up and down the valley. 

Figure 24 shows the CO2 cloud predicted by FLACS at various intervals in time. These are 

after the beginning of the release, a little after the release cut-off, 100 seconds after the 

release cut-off, and finally near the end of the simulation. Owing to the finite total mass 

discharge, the CO2 cloud is notably smaller than that predicted by the steady-state release 

CFX simulations. It can be observed from Figure 24(b) that the maximum CO2 concentration 

almost reduces to half (45% v/v) a little after the release cut-off and gradually reduces with 

time to reach 4% v/v near the end of the simulation (Figure 24(d)). 



 

7.  CONCLUSIONS 

The process of simulating a hypothetical ‘realistic’ release from a buried 0.914 m (36 inch) 

diameter, 217 km long pipeline has been demonstrated. Models for the pipeline outflow, 

near-field and far-field dispersion have been integrated, along with suitable thermophysical 

property models. A schematic representation of this integration is given as Figure 25. Results 

from the outflow model have been used to specify inlet boundary conditions for the near-field 

dispersion model, which in turn has provided inlet boundary conditions for the far-field 

dispersion model. Where possible, the models have been validated against data available in 

the open literature, and also using data generated by partners during the execution of the EC 

FP7 CO2PipeHaz project. 

The work has demonstrated that it is feasible, in principle, to simulate such industrially-

relevant flows. However, the computing resources required were found to be significant, 

requiring of the order weeks of computing time for the full solution. The use of this type of 

integrated modelling approach therefore appears unlikely to become widespread for routine 

CO2

One of the limitations of the approach demonstrated here is that the models are integrated in a 

linear fashion, with no feedback between them. This feedback could be particularly important 

if low wind speeds were to be simulated. In the present near-field model, the flow entrained 

into the crater was assumed to consist of ambient air, whereas under low wind-speed 

conditions, the CO

 pipeline risk assessment at present, if conducted upon standard workstation computers. 

However, these models should be immediately useful for the investigation of particular 

aspects of risk assessments. For instance, those where there are large differences in terrain 

heights close to a pipeline route, and where the effect of the terrain on the dispersion 

behaviour needs to be assessed in detail. 

2 jet may fall to the ground near the crater and this flow could include very 

high CO2

In the future, it would be useful to further validate this integrated modelling approach against 

publicly-available datasets, particularly those involving releases of dense-phase CO

 concentrations. The two-way coupling of the near- and far-field dispersion models 

is not trivial, but it should be reasonably straightforward to apply the concentrations predicted 

by the far-field model onto the near-field model boundaries, and for this process to be iterated 

a number of times if required, to account for these effects. 

2 from 

buried pipelines. The present work has demonstrated that the size of the solid CO2 particles 



released from a crater can have a significant effect upon the dispersion characteristics of the 

release. 

In view of the fact that most routine pipeline risk assessments will be carried out using 

integral or other phenomenological models that assume dispersion over flat terrain, it would 

be useful to use the models demonstrated here to determine under what set of conditions such 

models might provide unreliable results. It should be possible to investigate this matter by 

varying inputs (e.g. pipeline release rate, wind speed, terrain height differences) to the type of 

models presented here to investigate under what combination of conditions the results deviate 

significantly from those of more pragmatic modelling approaches. 

Finally, from an emergency-planning perspective, it would be useful to further develop and 

validate models that are able to predict the extent of the visible CO2 plume, as well as its 

extent in terms of its instantaneous hazardous CO2

 

 concentrations. Under typical humid 

northern European climatic conditions, a full-bore pipeline rupture may produce an optically-

dense cloud that extends many kilometres. 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.  NOMENCLATURE 

Roman letters:     Greek letters: 

 
A  Helmholtz free energy    α  dynamic vapour quality 

d  diameter     ρ  density 
e  internal energy    τ  relaxation time 
E  total energy     ijτ  shear stress 

wf  Fanning friction factor     

p  pressure      

s  source term     Subscripts:   
T  temperature        
t  time      c  critical 
u  velocity     eq  equilibrium  

v  volume     i  spatial indice 
x  spatial location    in  inlet 
       j  spatial indice 

Superscripts:      ml  meta-stable liquid 
       s  at saturation 

A  Reynolds average    sv  saturated vapour 

A  Favre average     t  turbulent  
A′′  fluctuating component    
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11.  FIGURE CAPTIONS  

Figure 1. Schematic diagram of the INERIS CO2

Figure 2. Schematic of the experimental rig main vessel and discharge pipe, with 

illustratory photographs of valves and the discharge orifice. 

 release test rig including sensor 

configuration. 

Figure 3. Pressure vessel internal instrumentation. 

Figure 4. Schematic of the orifice flange. 

Figure 5. Schematic representation of the use of a subgrid to model the flow through a 

small diameter puncture at the end of a pipe. 

Figure 6. Elevation variation along pipeline route. 

Figure 7. Upstream section, predicted release pressure, plotted against time for cases 

with and without inclination. 

Figure 8. Downstream section, predicted release pressure, plotted against time for cases 

with and without inclination. 

Figure 9. Total predicted mass discharge rate plotted against time for cases with and 

without inclination. 

Figure 10. Graphical representation of SAFT equation of state components. 

Figure 11. Predictions and data of the isothermal compressibility of a quaternary CO2

Alsiyabi et 

al. (2012

-

containing system plotted against pressure. Experimental data from 

). 

Figure 12. Adaptive mesh refinement grid mapped onto mean velocity predictions in the 

region of a Mach disc. 

Figure 13. CO2

Figure 14. Axial temperature and O

 internal energy predictions on the saturation line obtained using the 

composite equation of state, showing gaseous and dense phases. 

2 mole fraction predictions plotted against 

experimental data (symbols) for Tests 2. 



Figure 15. Radial temperature profiles of Test 8 at axial distances of 1, 2 and 5 m (lines – 

predictions, symbols – data). 

Figure 16. Schematic of modelled crater shape and dimensions. 

Figure 17. Sample three-dimensional geometry of a typical full-bore guillotine rupture 

into an elliptic crater. (a) View at x=0 depicting the crater length, and (b) view 

at z=0 depicting the crater plan. 

Figure 18. Sample three-dimensional model predictions of a typical full-bore guillotine 

rupture into a crater. (a) Dense-phase CO2

Figure 19. Near-field model predictions observed on a cross-sectional plane above the 

crater just above ground level. 

 mass fraction, and (b) total 

velocity. 

Figure 20. Near-field model predictions observed on a cross-sectional plane above the 

crater just above ground level. 

Figure 21. Terrain data depicting grid methodologies, and coloured according to height 

topography, loaded in FLACS (left) and CFX (right). 

Figure 22. Predicted CO2

Figure 23. CFX predicted steady-state CO

 jet in the vicinity of the crater using FLACS (left) and CFX 

(right). 

2 cloud, defined using three different mean 

CO2

Figure 24. Snapshots of the CO

 concentrations: 1% v/v (left); 2% v/v (middle); 4% v/v (right), and 

coloured according to the distance from the crater source. 

2 cloud at different time intervals, predicted by the 

FLACS model at (a) t = 10 s; (b) t = 150 s; (c) t = 240 s; and (d) t = 540 s. 

Here FMOLE (v/v) corresponds to volume fraction of CO2

Figure 25. Schematic representation of the thermo-physical modelling strategy. 

. 

 

 

 



 

12.  TABLE CAPTIONS 

Table 1. Parameters of the experimental releases. 

Table 2. Discharge properties predicted using various equations of state in comparison 

with the measured values for Test 2 (Table 1). 

Table 3. Discharge properties predicted using various equations of state in comparison 

with the measured values for Test 8 (Table 1). 

Table 4. Derivative properties useful in the current work. 

Table 5. Far-field source terms integrated from near-field calculations 
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