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ALMOST COMPLETE INTERSECTION BINOMIAL EDGE IDEALS AND

THEIR REES ALGEBRAS

A. V. JAYANTHAN, ARVIND KUMAR1, AND RAJIB SARKAR2

Abstract. Let G be a simple graph on n vertices and JG denote the binomial edge ideal of
G in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn]. In this article, we compute the second
graded Betti numbers of JG, and we obtain a minimal presentation of it when G is a tree
or a unicyclic graph. We classify all graphs whose binomial edge ideals are almost complete
intersection, prove that they are generated by a d-sequence and that the Rees algebra of
their binomial edge ideal is Cohen-Macaulay. We also obtain an explicit description of the
defining ideal of the Rees algebra of those binomial edge ideals.

1. Introduction

Let G be a simple graph with vertex set V (G) = [n] := {1, . . . , n} and edge set E(G). Vil-
larreal in [26] defined the edge ideal of G as I(G) = (xixj : {i, j} ∈ E(G)) ⊂ K[x1, . . . , xn].
Herzog et al. in [10] and independently Ohtani in [20] defined the binomial edge ideal of
G as JG = (xiyj − xjyi : i < j and {i, j} ∈ E(G)) ⊂ S = K[x1, . . . , xn, y1, . . . , yn]. In the
recent past, researchers have been trying to understand the connection between combinato-
rial invariants of G and algebraic invariants of I(G) and JG. While this relation between G
and I(G) is well explored (see for example [1] and the references therein), the connection
between the properties of G and JG are not very well understood, see [10, 13, 15, 16, 17, 24]
for a partial list. It is known that the Rees algebra of an ideal I, R(I) := ⊕n≥0I

ntn, encodes
a lot of asymptotic properties of I. In the case of monomial edge ideals, properties of their
Rees algebra have been explored by several researchers (see [27] and the citations to this
paper). In [27], Villarreal described the generators of the defining ideal of the Rees algebra
of a graph. As a consequence of this, he proved that I(G) is of linear type, i.e., the Rees
algebra is isomorphic to the Symmetric algebra, if and only if G is either a tree or an odd
unicyclic graph. However, nothing much is known about the Rees algebra of binomial edge
ideals. In this article, we initiate such a study.

An ideal I in a standard graded polynomial ring is said to be complete intersection if
µ(I) = ht(I), where µ(I) denotes the cardinality of a minimal homogeneous generating set
of I. It is said to be almost complete intersection if µ(I) = ht(I) + 1 and Ip is complete
intersection for all minimal primes p of I. It is known that for a connected graph G, JG is
complete intersection if and only if G is a path, [6]. Rinaldo studied the Cohen-Macaulayness
of certain subclasses of almost complete intersection binomial edge ideals, [23]. In this article,
we characterize graphs whose binomial edge ideals are almost complete intersections. We
prove that these are either a subclass of trees or a subclass of unicyclic graphs (Theorems
4.3, 4.4).
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AMS Subject Classification (2010): 13D02,13C13, 05E40.
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Understanding the depth of the Rees algebra and the associated graded ring of ideals has
been a long studied problem in commutative algebra. If an ideal is generated by a regular
sequence in a Cohen-Macaulay local ring, then the corresponding associated graded ring
and the Rees algebra are known to be Cohen-Macaulay. In general, computing the depth of
these blowup algebras is a non-trivial problem. If an ideal is almost complete intersection,
then the Cohen-Macaulayness of the Rees algebra and the associated graded ring are closely
related by a result of Herrmann, Ribbe and Zarzuela (see Theorem 4.5). We prove that the
associated graded ring, and hence, the Rees algebra of almost complete intersection binomial
edge ideals are Cohen-Macaulay, (Theorem 4.7).

Another problem of interest for commutative algebraists is to compute the defining ideal of
the Rees algebra. Describing the defining ideal not only gives more insight into the structure
of the Rees algebra, but it also helps in understanding other homological properties and
invariants associated with the Rees algebra. For example, the maximal degree occurring in a
minimal generating set of the defining ideal also serves as a lower bound for one of the most
important homological and computational invariant, the Castelnuovo-Mumford regularity.
In general, it is quite a hard task to describe the defining ideals of Rees algebras. Huneke
proved that the defining ideal of the Rees algebra of an ideal generated by a d-sequence
has a linear generating set, [11] (see [21] for a simple proof). We show that homogeneous
almost complete intersection ideals in polynomial rings over an infinite field are generated
by a d-sequence, Proposition 4.10. As a consequence, we derive that if JG is an almost
complete intersection ideal, then JG is generated by a d-sequence, (Corollary 4.11). We also
prove that being almost complete intersection is not a necessary condition for the binomial
edge ideal to be generated by a d-sequence, by showing that JK1,n is generated by a d-
sequence (Proposition 4.9). We then describe the defining ideals of the Rees algebras of
almost complete intersection binomial edge ideals, (Corollary 4.13, Remark 4.14).

It is known that for an ideal I of linear type, the generators of the defining ideal of the Rees
algebra can be obtained from the matrix of a minimal presentation of I [12]. For describing
the generating set of the defining ideal of Rees algebras, we compute a minimal presentation
of ideals. In this process, we compute the second graded Betti numbers and generators of
the second syzygy of S/JG when G is a tree or a unicyclic graph, (Theorems 3.1 - 3.7). Here
we do not assume that the binomial edge ideal is almost complete intersection.

The article is organized as follows. The second section contains all the necessary definitions
and notation required in the rest of the article. In Section 3, we describe the second graded
Betti numbers and first syzygy of the binomial edge ideal of trees and unicyclic graphs. We
study the Rees algebra of almost complete intersection binomial edge ideals in Section 4.

Acknowledgement: We would like to thank the anonymous referee for asking some perti-
nent questions which allowed to us improve some of the results in the initial draft.

2. Preliminaries

Let G be a simple graph with the vertex set [n] and edge set E(G). A graph on [n]
is said to be a complete graph, if {i, j} ∈ E(G) for all 1 ≤ i < j ≤ n. The complete
graph on [n] is denoted by Kn. For A ⊆ V (G), G[A] denotes the induced subgraph of G
on the vertex set A, that is, for i, j ∈ A, {i, j} ∈ E(G[A]) if and only if {i, j} ∈ E(G).
For a vertex v, G \ v denotes the induced subgraph of G on the vertex set V (G) \ {v}. A
subset U of V (G) is said to be a clique if G[U ] is a complete graph. A vertex v of G is
said to be a simplicial vertex if v is contained in only one maximal clique. For a vertex v,
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NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)} denotes the neighborhood of v in G and Gv is the
graph on the vertex set V (G) and edge set E(Gv) = E(G) ∪ {{u, w} : u, w ∈ NG(v)}. The
degree of a vertex v, denoted by degG(v), is |NG(v)|. A vertex v is said to be a pendant vertex
if degG(v) = 1. Let c(G) denote the number of components of G. A vertex v is called a cut
vertex of G if c(G) < c(G \ v). For an edge e in G, G \ e is the graph on the vertex set V (G)
and edge set E(G)\{e}. An edge e is called a cut edge if c(G) < c(G\e). Let u, v ∈ V (G) be
such that e = {u, v} /∈ E(G), then we denote by Ge, the graph on vertex set V (G) and edge
set E(Ge) = E(G) ∪ {{x, y} : x, y ∈ NG(u) or x, y ∈ NG(v)}. A cycle is a connected graph
G with degG(v) = 2 for all v ∈ V (G). A graph is said to be a unicyclic graph if it contains
exactly one cycle as a subgraph. A graph is a tree if it does not have a cycle. The girth of a
graph G is the length of a shortest cycle in G. A complete bipartite graph on m+n vertices,
denoted by Km,n, is the graph with the vertex set V (Km,n) = {u1, . . . , um}∪{v1, . . . , vn} and
edge set E(Km,n) = {{ui, vj} : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. A claw is the complete bipartite
graph K1,3. A claw {u, v, w, z} with center u is the graph with vertices {u, v, w, z} and edges
{{u, v}, {u, w}, {u, z}}. For a graph G, let CG denote the set of all induced claws in G.

Let R = K[x1, . . . , xm] be a standard graded polynomial ring over a field K and M be a
finitely generated graded R-module. Let

0 −→
⊕

j∈Z

R(−j)βp,j(M) −→ · · · −→
⊕

j∈Z

R(−j)β0,j(M) −→ M −→ 0,

be the minimal graded free resolution of M , where R(−j) is the free R-module of rank 1
generated in degree j. The number βi,j(M) is called the (i, j)-th graded Betti number of M .
Then, the exact sequence

⊕

j∈Z

R(−j)β1,j(M) →
⊕

j∈Z

R(−j)β0,j(M) → M → 0

is called the minimal presentation of M .
Let G be a graph on [n]. For an edge e = {i, j} ∈ E(G) with i < j, we define fe = fi,j =

fj,i := xiyj − xjyi. For T ⊂ [n], let T̄ = [n] \ T and cT denote the number of components

of G[T̄ ]. Also, let G1, · · · , GcT be the components of G[T̄ ] and for every i, G̃i denote the
complete graph on V (Gi). Let PT (G) := ( ∪

i∈T
{xi, yi}, JG̃1

, · · · , JG̃cT
). A set T ⊂ [n] is said to

have the cut point property if, for every i ∈ T, i is a cut vertex of graph G[T̄ ∪ {i}].
We recall some results on the binomial edge ideal from [10] which are used in the subsequent

sections.

Theorem 2.1. Let G be a graph on [n]. Then, we have the following:

(a) (Corollary 2.2) JG is a radical ideal.
(b) (Lemma 3.1) For T ⊂ [n], PT (G) is a prime ideal and ht(PT (G)) = n+ |T | − cT .
(c) (Theorem 3.2) JG = ∩

T⊂[n]
PT (G).

(d) (Corollary 3.9) For T ⊂ [n], PT (G) is a minimal prime of JG if and only if either T = ∅
or T has the cut point property.

Mapping Cone Construction: For an edge e = {i, j} ∈ E(G), We consider the following
exact sequence:

0 −→ S

JG\e : fe
(−2)

·fe−→ S

JG\e
−→ S

JG
−→ 0. (1)
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By [19, Theorem 3.7], we have

JG\e : fe = J(G\e)e + (gP,t : P is a path of length s+ 1 between i, j and 0 ≤ t ≤ s),

where for a path P : i, i1, . . . , is, j, gP,0 = yi1 · · · yis and for each 1 ≤ t ≤ s, gP,t =
xi1 · · ·xityit+1 · · · yis. Let (F., dF.) and (G., dG.) be minimal S-free resolutions of S/JG\e

and [S/(JG\e : fe)](−2) respectively. Let ϕ. : (G., dG.) −→ (F., dF.) be the complex
morphism induced by the multiplication by fe. The mapping cone (M(ϕ)., δ.) is an S-
free resolution of S/JG such that (M(ϕ))i = Fi ⊕ Gi−1 and the differential maps are
δi(x, y) = (dFi (x) + ϕi−1(y),−dGi−1(y)) for x ∈ Fi and y ∈ Gi−1. It need not necessarily
be a minimal free resolution. We refer the reader to [5] for more details on the mapping
cone.

3. Betti numbers and Syzygy of binomial edge ideals

In this section, we describe the first graded Betti numbers and the first syzygy of binomial
edge ideals of trees and unicyclic graphs. First, we compute the second graded Betti numbers
of S/JG when G is a tree.

Theorem 3.1. Let G be a tree on [n]. Then,

β2(S/JG) = β2,4(S/JG) =

(

n− 1

2

)

+
∑

v∈V (G)

(

degG(v)

3

)

.

Proof. We prove this by induction on n. If n = 2, then G = P2, and hence, JG is complete
intersection. Therefore, β2(S/JG) = 0. Hence, the assertion follows. We now assume that
n > 2. Let e = {u, v} be an edge such that u is a pendant vertex. The long exact sequence
of Tor in degree j component corresponding to the short exact sequence (1) is:

· · · → TorS2,j

(

S

JG\e
,K

)

→ TorS2,j

(

S

JG
,K

)

→ TorS1,j

(

S

JG\e : fe
(−2),K

)

→ · · · (2)

Since e is a cut edge and u is a pendant vertex of G, (G \ e)e = (G \ u)v ⊔ {u}. Thus, it
follows from [19, Theorem 3.7] that JG\e : fe = J(G\u)v . One can observe that

Tor1,j

(

S

J(G\u)v

(−2),K

)

≃ Tor1,j−2

(

S

J(G\u)v

,K

)

.

Since G \ e = (G \ u) ⊔ {u}, JG\e = JG\u. Therefore, by induction, we obtain

β2,4(S/JG\e) =

(

n− 2

2

)

+
∑

w∈V (G)\{v}

(

degG(w)

3

)

+

(

degG(v)− 1

3

)

and β2,j(S/JG\e) = 0 for j 6= 4. If j 6= 4, then

Tor1,j−2

(

S

J(G\u)v

,K

)

= 0.

Hence, β2,j(S/JG) = 0, if j 6= 4. Since β2,2(S/J(G\u)v) = 0 and β1,4(S/JG\e) = 0, we
have β2,4(S/JG) = β2,4(S/JG\e) + β1,2(S/J(G\u)v ). Now, β1,2(S/J(G\u)v ) = |E((G \ u)v)| =
n− 2 +

(

degG(v)−1
2

)

. Hence, β2(S/JG) = β2,4(S/JG) =
(

n−1
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

. �
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We now describe the first syzygy of binomial edge ideals of trees. To compute a minimal
generating set of first syzygy, we crucially use the knowledge of the Betti numbers of JG. A
tree on [n] vertices has n−1 edges. For convenience in writing the list of generators, we need
some notation. For A ⊆ [n] and i ∈ A, we define pA(i) = |{j ∈ A | j ≤ i}|. The function pA
indicates the position of an element in A when the elements are arranged in the ascending
order.

Theorem 3.2. Let G be a tree on [n] vertices. Then, the first syzygy of JG is minimally
generated by elements of the form

(a) fi,je{k,l} − fk,le{i,j}, where {i, j}, {k, l} ∈ E(G) and {e{i,j} : {i, j} ∈ E(G)} is the
standard basis of S(−2)n−1;

(b) (−1)pA(j)fk,le{i,j} + (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l}, where A = {i, j, k, l} ∈ CG
with center at i.

Proof. From Theorem 3.1, we have β2(S/JG) = β2,4(S/JG) =
(

n−1
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

.
Therefore, the minimal presentation of JG is of the form

S(−4)β2,4(S/JG) ϕ−→ S(−2)n−1 ψ−→ JG −→ 0.

Note that |CG| =
∑

v∈V (G)

(

degG(v)
3

)

. Since β2(S/JG) =
(

n−1
2

)

+ |CG|, we index the standard

basis of S(−4)β2(S/JG) accordingly. Let

S1 = {E{i,j},{k,l} : {i, j}, {k, l} ∈ E(G), i < j, k < l and (i, j) 
lex (k, l)}
S2 = {Ei

{j,k,l} : {i, j, k, l} ∈ CG with center at i
}

and S = S1∪S2 denote the standard basis of S(−4)β2(S/JG). For a pair of edges {i, j}, {k, l} ∈
E(G), fi,jfk,l − fk,lfi,j = 0 gives a relation among the generators of JG. Let {i, j, k, l} ∈ CG
be a claw with center at i. Then, it can be easily verified that for A = {i, j, k, l},

(−1)pA(j)fk,lfi,j + (−1)pA(k)fj,lfi,k + (−1)pA(l)fj,kfi,l = 0,

which gives another relation among the generators of JG. Define the maps ϕ and ψ as follows:

ϕ
(

E{i,j},{k,l}

)

= fi,je{k,l} − fk,le{i,j};
ϕ
(

Ei
{j,k,l}

)

= (−1)pA(j)fk,le{i,j} + (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l};

ψ(e{i,j}) = fi,j,

where A = {i, j, k, l}. Observe that ϕ(S1) is the collection of elements of type (a) in the state-
ment of the Theorem and ϕ(S2) is the collection of elements of type (b). Also, for any pair of
edges {i, j}, {k, l} and a claw {u, v, w, z} with u as a center, we have ψ

(

ϕ(E{i,j},{k,l})
)

= 0 and
ψ(ϕ(Eu

{v,z,w})) = 0. Since β2,j = 0 for all j 6= 4, it follows that the first syzygy is generated

in degree 4. Moreover, as β2(S/JG) = β2,4(S/JG) = |S|, to prove the assertion, it is enough
to prove that the elements of ϕ(S) are K-linearly independent, equivalently, the columns
of the matrix of ϕ are K-linearly independent. For this, note that for each {i, j} ∈ E(G),
the entries of the corresponding row are the coefficients of e{i,j} in the expression for the
images of elements in S under ϕ. The coefficient of e{i,j} in ϕ(E{i,j},{k,l}) or ϕ(E{k,l},{i,j})
is ±fk,l. Moreover, the entry will be zero in the column corresponding to ϕ(E{u,v},{w,z}) for

{u, v} 6= {i, j} and {w, z} 6= {i, j}. Therefore, among the first
(

n−1
2

)

column entries in the
row corresponding to e{i,j}, there will be (n−2) non-zero entries, namely the binomials corre-
sponding to all the edges other than {i, j}. In ϕ(Eu

{v,w,z}), the coefficient of e{i,j} is non-zero if
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and only if either i = u and j ∈ {v, w, z} or j = u and i ∈ {v, w, z}. If i = u and j = v (sim-
ilarly any one of the other three), then the coefficient of e{i,j} is ±fw,z. It may be noted here
that fw,z does not correspond to an edge in G. If Eu1

{v1,w1,z1}
and Eu2

{v2,w2,z2}
are two distinct

basis elements {i, j} in both the claws, then {u1, v1, w1, z1} \ {i, j} 6= {u2, v2, w2, z2} \ {i, j}.
Hence, the corresponding coefficients of e{i,j} in ϕ(Eu1

{v1,w1,z1}
) and ϕ(Eu2

{v2,w2,z2}
) will not be

the same. From the above discussion one concludes that in the row corresponding to e{i,j},
each nonzero entry is of the form ±fk,l for some k, l ∈ [n], {k, l} 6= {i, j} and no two are
equal. Therefore, the entries of this row can be seen as the minimal generating set of bino-
mial edge ideal of a graph on [n], possibly different from G, and hence, they are K-linearly
independent. Therefore, the assertion follows. �

We now study the first graded Betti numbers and syzygy of binomial edge ideal of unicyclic
graphs. Let G be a unicyclic graph on the vertex set [n] of girth m. First, we compute
β2(S/JG), where G is a unicyclic graph of girth 3.

Theorem 3.3. Let G be a unicyclic graph on [n] of girth 3. Let v1, v2, v3 be the vertices of
the cycle in G. Then,

β2(S/JG) = β2,3(S/JG) + β2,4(S/JG) = 2 + β2,4(S/JG),

β2,4(S/JG) =

(

n

2

)

+
∑

v∈V (G)

(

degG(v)

3

)

−
∑

i=1,2,3

degG(vi) + 3.

Proof. We prove this by induction on n. By [24, Theorem 2.2], for any graph G, β2,3(S/JG) =
2k3(G), where k3(G) denotes the number of K3’s appearing in G. If n = 3, then G = K3,
and hence, the assertion follows from [24, Theorem 2.1]. We now assume that n > 3. Let
e = {u, v} be an edge such that u is a pendant vertex. Since e is a cut edge and u is a
pendant vertex of G, (G \ e)e = (G \ u)v ⊔ {u}. Thus, JG\e : fe = J(G\u)v . By [24, Theorem
2.2], we get β2,3(S/JG\e) = 2. Therefore, by induction, we get

β2,4(S/JG\e) =

(

n− 1

2

)

+
∑

w∈V (G)\{v}

(

degG(w)

3

)

+

(

degG(v)− 1

3

)

−
∑

i=1,2,3

degG\e(vi) + 3

and β2,j(S/JG\e) = 0 for j > 4. If j 6= 4, then Tor1,j−2

(

S
J(G\u)v

,K
)

= 0. Hence, the long exact

sequence (2) gives that β2,j(S/JG) = 0, if j > 4. Since β2,2(S/J(G\u)v) = 0 and β1,4(S/JG\e) =
0, it follows from the long exact sequence (2) that β2,4(S/JG) = β2,4(S/JG\e)+β1,2(S/J(G\u)v).

If v = vi for some i, then β1,2(S/J(G\u)v ) = |E((G \ u)v)| = |E(G)| − 1 +
(

degG(v)−1
2

)

− 1 =

n − 2 +
(

degG(v)−1
2

)

. Moreover, for this i, degG\e(vi) = degG(vi) − 1. Hence, we get the
required expression for β2,4(S/JG). If v 6= vi for all i, then β1,2(S/J(G\u)v) = |E((G \ u)v)| =
n− 1 +

(

degG(v)−1
2

)

. Hence, β2,4(S/JG) =
(

n
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

−∑

i=1,2,3 degG(vi) + 3. �

We now compute the second graded Betti numbers of S/JG when G is a unicyclic graph
of girth at least 4.

Theorem 3.4. If G is a unicyclic graph on [n] of girth m ≥ 4, then

β2(S/JG) =

{

β2,4(S/JG), if m = 4,
β2,4(S/JG) + β2,m(S/JG) if m > 4,
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where

β2,4(S/JG) =

{

(

n
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

+ 3 if m = 4,
(

n
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

if m > 4,

and β2,m(S/JG) = m− 1, if m > 4.

Proof. Let e = {u, v} be an edge of the cycle in G. Then, after removing the edge e, G \ e
becomes a tree. Therefore, from Theorem 3.1, we have

β2(S/JG\e) = β2,4(S/JG\e) =

(

n− 1

2

)

+
∑

w∈V (G)\{u,v}

(

degG(w)

3

)

+
∑

w∈{u,v}

(

degG(w)− 1

3

)

.

Note that (G \ e)e = ((G \ e)v)u.
It follows from [19, Theorem 3.7] that JG\e : fe = J((G\e)v)u + I, where

I = (gP,t : P : u, i1, . . . , is, v is a path between u and v in G \ e and 0 ≤ t ≤ s).

In G\ e, there is only one path between u and v and the corresponding gP,t has degree m−2
for all t. Since β2,2(S/(J((G\e)v)u + I)) = 0 and β1,4(S/JG\e) = 0, we have β2,4(S/JG) =
β2,4(S/JG\e) + β1,2(S/(J((G\e)v)u + I)). For m = 4, I = (y2y3, x2y3, x2x3). Therefore,

β1,2(S/(J(G\e)e + I)) = 3 + |E((G \ e)e)| = 3 + (n− 1) +

(

degG(v)− 1

2

)

+

(

degG(u)− 1

2

)

.

Hence,

β2,4(S/JG) = β2,4(S/JG\e) + β1,2(S/(J(G\e)e + I)) =

(

n

2

)

+
∑

v∈V (G)

(

degG(u)

3

)

+ 3.

Also, β2,j(S/JG\e) = 0 and β1,j−2(S/(J(G\e)e + I)) = 0, if j 6= 4. Therefore, β2,j(S/JG) = 0,
if j 6= 4. Now assume that m > 4. Note that for j 6= 4, j 6= m,

Tor1,j−2

(

S

J((G\e)v)u + I
,K

)

= 0 and dimK

(

Tor1,m−2

(

S

J((G\e)v)u + I
,K

))

= m− 1.

Hence, it follows from the long exact sequence (2) that β2,j(S/JG) = 0, if j /∈ {4, m}. Since
β1,j(S/JG\e) = 0 for j 6= 2, we have

Tor1,m−2

(

S

J((G\e)v)u + I
,K

)

≃ Tor2,m

(

S

JG
,K

)

.

Thus, for m > 4, β2,m(S/JG) = m − 1. Now, β1,2(S/(J((G\e)v)u) + I) = |E(((G \ e)v)u)| =
n− 1 +

(

degG(v)−1
2

)

+
(

degG(u)−1
2

)

. Hence, β2,4(S/JG) =
(

n
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

. �

Now, we obtain a minimal generating set for the first syzygy of JCn
for n ≥ 4. Let G = Cn

be a cycle on [n] with edge set E(Cn) = {{i, i+ 1}, {1, n} : 1 ≤ i ≤ n− 1}.
Theorem 3.5. Let Cn be the cycle on n vertices, n ≥ 4. Let {e{k,k+1}, e{1,n} : 1 ≤ k ≤ n−1}
denote the standard basis of Sn and Y = y1 · · · yn. For i = 1, . . . , n − 1, define bi ∈ Sn as
follows:

(b1)k =
Y

ykyk+1
for 1 ≤ k ≤ n− 1, (b1)n =

Y

y1yn
,



8 A. V. JAYANTHAN, ARVIND KUMAR, AND RAJIB SARKAR

for 1 ≤ i ≤ n− 2, (bi+1)k =











(bi)k · xi+2

yi+2
if k ≤ i,

(bi)i+1 · x1y1 if k = i+ 1,

(bi)k · xi+1

yi+1
if k ≥ i+ 2.

Then, the first syzygy of JCn
is minimally generated by

{

fk,le{i,j}−fi,je{k,l} : {i, j}, {k, l} ∈ E(Cn)
}

⋃

{

n−1
∑

k=1

(bi)ke{k,k+1} − (bi)ne{1,n} : 1 ≤ i ≤ n− 1

}

.

Proof. By [29, Corollary 16], β2,4(S/JCn
) =

{

9 if n = 4;
(

n
2

)

if n > 4,
β2,n(S/JCn

) = n−1 for n > 4

and β2,j(S/JCn
) = 0 for all j 6= 4, n. Therefore, the minimal presentation of JCn

is

S(−4)(
n
2) ⊕ S(−n)n−1 −→ S(−2)n −→ JCn

−→ 0. (3)

Note that JCn
= JPn

+ (f1,n). Consider the following exact sequence

0 −→ S

JPn
: f1,n

(−2)
·f1,n−→ S

JPn

−→ S

JCn

−→ 0

and apply the mapping cone construction. Since JPn
is complete intersection, the Koszul

complex (F., dF.) gives the minimal free resolution for S/JPn
. Let {e{i,j},{k,l} | {i, j} 6=

{k, l} ∈ E(Pn)} denote the standard basis of S(
n−1
2 ) and {e{j,j+1} | 1 ≤ j ≤ n − 1} denote

the standard basis of Sn−1. Set dF1 (e{j,j+1}) = fj,j+1 for 1 ≤ j ≤ n − 1 and dF2 (e{i,j},{k,l}) =
fk,le{i,j} − fi,je{k,l} for {i, j} 6= {k, l} ∈ E(Pn). It follows from [19, Theorem 3.7] that

JPn
: f1,n = JPn

+ (y2 · · · yn−1, x2y3 · · · yn−1, . . . , x2 · · ·xn−1).

Let (G., dG.) be the minimal resolution of S
(JPn :f1,n)

(−2) with the differential maps given by

dG1 (Ei,i+1) = fi,i+1 for 1 ≤ i ≤ n−1 and dG1 (Em) = x2 · · ·xmym+1 · · · yn−1 for 1 ≤ m ≤ n−1,
where {Ei,i+1, Em : 1 ≤ i ≤ n− 1, 1 ≤ m ≤ n− 1} denotes the standard basis of G1. Clearly
the map from G0 to F0 in the mapping cone complex is the multiplication by f1,n. Define
the map ϕ1 : G1 −→ F1 by

ϕ1(Ei,i+1) = f1,ne{i,i+1} 1 ≤ i ≤ n− 1,

ϕ1(Em) =
∑n−1

k=1(bm)ke{k,k+1} 1 ≤ m ≤ n− 1,

where (bm)k’s are as defined in the statement of the Theorem. We show that the map ϕ1

satisfies the property that for all x ∈ G1, d
F

1 (ϕ1(x)) = f1,n · dG1 (x). It is enough to prove
the property for the basis elements. Clearly dF1 (ϕ1(E{i,i+1})) = f1,nfi,i+1 = f1,n · dG1 (E{i,i+1}).

Now dF1 (ϕ1(E1)) = dF1
(
∑n−1

k=1(b1)ke{k,k+1}

)

=
∑n−1

k=1
Y

ykyk+1
fk,k+1. Note that

fk,k+1

ykyk+1
= xk

yk
− xk+1

yk+1
.

Now, taking the summation over k, we get dF1 (ϕ1(E1)) = f1,n(y2 · · · yn−1) = f1,n · dG1 (E1).

Let m ≥ 2. Then, dF1 (ϕ1(Em)) = dF1
(
∑n−1

k=1(bm)ke{k,k+1}

)

=
∑n−1

k=1(bm)kfk,k+1. It can be seen
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that
m−1
∑

k=1

(bm)kfk,k+1 = Y

[

x2
y2

· · · xm−1

ym−1

xm+1

ym+1

(

x1
y1

− xm
ym

)]

,

(bm)mfm,m+1 = Y

[

x1
y1

· · · xm−1

ym−1

(

xm
ym

− xm+1

ym+1

)]

,

n−1
∑

k=m+1

(bm)kfk,k+1 = Y

[

x2
y2

· · · xm
ym

(

xm+1

ym+1

− xn
yn

)]

.

Summing up these three terms together, we get

dF1 (ϕ1(Em)) = Y

[

x2
y2

· · · xm
ym

(

x1
y1

− xn
yn

)]

= x2 · · ·xmym+1 · · · yn−1f1,n = f1,n · dG1 (Em).

Therefore, by the mapping cone construction, we get a presentation of JCn
as

F2 ⊕G1 −→ F1 ⊕G0 −→ JCn
−→ 0.

Since F2 ⊕ G1 ≃ S(
n
2)+n−1 and F1 ⊕ G0 ≃ Sn whose ranks coincide with the corresponding

Betti numbers of JCn
, we can conclude that this is a minimal presentation. Hence, the first

syzygy of JCn
is minimally generated by the images of the standard basis elements under

the map Φ : F2 ⊕G1 → F1 ⊕G0, where Φ =

[

dF2 ϕ1

0 −dG1

]

. Then, we have

Φ(e{i,j},{k,l}) = dF2 (e{i,j},{k,l}) = fk,le{i,j} − fi,je{k,l} for {i, j} 6= {k, l} ∈ E(Pn),

Φ(Ei,i+1) = (ϕ1 − dG1 )(Ei,i+1) = f1,ne{i,i+1} − fi,i+1e{1,n} for i = 1, . . . , n− 1, and

Φ(Em) = ϕ1(Em)− dG1 (E1) =

n−1
∑

k=1

(bm)ke{k,k+1} − (bm)ne{1,n} for i = 1, . . . , n− 1.

Hence, the assertion follows. �

We now describe a minimal generating set for the first syzygy of binomial edge ideals of
unicyclic graphs. The syzygy structure is slightly different for unicyclic graphs of girth 3.
We first deal with that case.

Theorem 3.6. Let G be a unicyclic graph on [n] of girth 3. Denote the vertices of the unique
cycle of G by v1 < v2 < v3. Let the standard basis of S(−2)n be denoted by {e{i,j} : {i, j} ∈
E(G), i < j}. Then, the first syzygy of JG is minimally generated by the elements of the
form

(a) xv1e{v2,v3} − xv2e{v1,v3} + xv3e{v1,v2}, yv1e{v2,v3} − yv2e{v1,v3} + yv3e{v1,v2},
(b) fi,je{p,l}−fp,le{i,j}, where {{i, j}, {p, l}} 6⊂ {{v1, v2}, {v1, v3}, {v2, v3}}, {i, j} 6= {p, l}

and {i, j}, {p, l} ∈ E(G),
(c) (−1)pA(j)fk,le{i,j} + (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l}, where A = {i, j, k, l} ∈ CG

with center at i.

Proof. We proceed by induction on n = |V (G)| = |E(G)|. For n = 3, G is a complete graph
i.e., JG is the ideal generated by the set of all 2× 2 minor of a 2× 3 matrix. Then, it follows
from Eagon-Northcott complex that the first syzygy of JG is minimally generated by

{

xv1e{v2,v3} − xv2e{v1,v3} + xv3e{v1,v2}, yv1e{v2,v3} − yv2e{v1,v3} + yv3e{v1,v2}
}

.
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Now, we assume that n > 3. From Theorem 3.3, we know that the minimal presentation
of JG is of the form

S(−4)β2,4(S/JG) ⊕ S(−3)β2,3(S/JG) ϕ−→ S(−2)n
ψ−→ JG −→ 0,

where β2,4(S/JG) =

(

n

2

)

+
∑

v∈V (G)

(

degG(v)

3

)

−
∑

i=1,2,3

degG(vi) + 3 and β2,3(S/JG) = 2.

Let e = {u, v} be an edge in G such that u is a pendant vertex of G. Since e is a cut edge and
u is a pendant vertex of G, (G \ e)e = (G \ u)v ⊔ {u}. Thus, JG\e : fe = J(G\u)v . Since G \ e
is also a unicyclic graph having the unique cycle of girth 3 and JG\e = JG\u, by induction
we get that the first syzygy of JG\e is generated by elements of the form

(a) xv1e{v2,v3} − xv2e{v1,v3} + xv3e{v1,v2}, yv1e{v2,v3} − yv2e{v1,v3} + yv3e{v1,v2},
(b) fi,je{p,l}−fp,le{i,j}, where {{i, j}, {p, l}} 6⊂ {{v1, v2}, {v1, v3}, {v2, v3}}, {i, j} 6= {p, l}

and {i, j}, {p, l} ∈ E(G \ e),
(c) (−1)pA(j)fk,le{i,j}+ (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l}, where A = {i, j, k, l} ∈ CG\e

with center at i.

Case-1: We assume that v 6= vi for all 1 ≤ i ≤ 3. Now, we apply the mapping cone
construction to the short exact sequence (1). Let (G., dG.) be a minimal free resolution

of [S/(JG\e : fe)](−2). Then G1 ≃ S |E(G)|−1+(degG(v)−1
2 ). Also, let (F., dF.) be a minimal

free resolution of S/JG\e. Then, F1 ≃ S |E(G)|−1 and F2 ≃ Sβ2(S/JG\e). By Theorem 3.3,

β2(S/JG\e) = 2+β2,4(S/JG\e), where β2,4(S/JG\e) =
(

n−1
2

)

+
∑

w∈V (G)\v

(

degG(w)
3

)

+
(

degG(v)−1
3

)

.

Set S1 = {E{i,j} : {i, j} ∈ E(G\u)} and S2 = {E{i,j} : i, j ∈ NG(v)\u}. Then, |S1| = |E(G\
e)| = n−1 and |S2| = |E((G \ e)e) \E(G \ e)| =

(

degG(v)−1
2

)

. Let S1∪S2 denote the standard

basis of G1 and set dG1 (E{i,j}) = fi,j for E{i,j} ∈ S1 ∪ S2. Also, let {e{i,j} : {i, j} ∈ E(G \ u)}
be the standard basis of F1. By the mapping cone construction, the map from G0 to F0 is
multiplication by fu,v. Define ϕ1 : G1 → F1 by

ϕ1(E{i,j}) =

{

fu,v · e{i,j} if E{i,j} ∈ S1,
(−1)pA(j)+pA(u)+1fi,ue{j,v} + (−1)pA(i)+pA(u)+1fj,ue{i,v} if E{i,j} ∈ S2.

Then, to prove that ϕ1 is a lifting map from G1 to F1 in the mapping cone construction,
it is enough to show that the corresponding diagram commutes i.e., dF1 (ϕ1(x)) = fu,v · dG1 (x)
for all x ∈ G1. If i, j ∈ NG(v) \ u, then {v, u, i, j} is an induced claw with center v and it
can be easily seen that

(−1)pA(j)+pA(u)+1fi,ufj,v + (−1)pA(i)+pA(u)+1fj,ufi,v − fi,jfu,v = 0.

Therefore, it follows that for E{i,j} ∈ S1 ∪ S2, d
F

1 (ϕ1(E{i,j})) = fu,v · dG1 (E{i,j}). Hence, the
mapping cone construction gives a S-free presentation of JG, which is

F2 ⊕G1 −→ F1 ⊕G0 −→ JG −→ 0. (4)

Since F2 ⊕G1 ≃ Sβ2(S/JG) and F1 ⊕G0 ≃ Sn, the above presentation is a minimal one.

Case-2: Let v = vi for some 1 ≤ i ≤ 3. Assume that v = v1. Then, {v2, v3} ∈ E((G \ e)e)∩
E(G \ e). Hence, β1,2(S/J(G\u)v) = rankG1 = (n− 1) +

(

degG(v)−1
2

)

− 1. Also, it follows from
Theorem 3.3 that

β2(S/JG\e) = 2 +

(

n− 1

2

)

+
∑

x∈V (G)\u

(

degG\e(x)

3

)

−
3

∑

i=1

degG\e(vi) + 3.
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Note that degG(v1) = degG\e(v1) + 1 and degG(x) = degG\e(x) for all x 6= u and x 6=
v. Substituting these values in the above expression and taking summation with rankG1,
we see that rankF2 + rankG1 = β2(S/JG). Let S1 = {E{i,j} : {i, j} ∈ E(G \ u)} and

S2 =
{

E{i,j} : i, j ∈ NG(v) \ u, {i, j} 6= {v2, v3}
}

. Define ϕ1 : G1 −→ F1 as in Case-1 and
proceeding as in there, it can be proved that the mapping cone construction gives a minimal
S-free presentation of JG as in (4). The first syzygy is minimally generated by the images
of the standard basis under the map Φ : F2 ⊕G1 −→ F1 ⊕G0 which is given by the matrix
[

dF2 ϕ1

0 −dG1

]

. Now, as done in the proof of Theorem 3.5, one concludes that the images under

Φ are precisely the elements given in the assertion of the theorem. �

Theorem 3.7. Let G be a unicyclic graph on [n] of girth m ≥ 4. Also, let the vertex set of
the unique cycle in G be {1, . . . , m}. Let {e{i,j} : {i, j} ∈ E(G)} denote the standard basis
of Sn. Then, the first syzygy of JG is minimally generated by elements of the form

(a) fi,je{k,l} − fk,le{i,j}, where {i, j}, {k, l} ∈ E(G) and {i, j} 6= {k, l},
(b) (−1)pA(v)fz,we{u,v}+(−1)pA(z)fv,we{u,z}+(−1)pA(w)fv,ze{u,w}, where A = {u, v, w, z} ∈

CG with center at u,
(c)

∑m−1
k=1 (bi)ke{k,k+1} − (bi)me{1,m}, where 1 ≤ i ≤ m − 1, and bi’s are as defined in

Theorem 3.5.

Proof. We prove the assertion by induction on n −m. If n = m, then G is a cycle and the
result follows from Theorem 3.5. Now, we assume that n > m. From Theorem 3.4, we know
that the minimal presentation of JG is of the form

Sβ2(S/JG) −→ Sn −→ JG −→ 0,

where

β2(S/JG) =

{

β2,4(S/JG) if m = 4
β2,4(S/JG) + β2,m(S/JG) if m > 4, and

β2,4(S/JG) =

{

(

n
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

+ 3 if m = 4
(

n
2

)

+
∑

v∈V (G)

(

degG(v)
3

)

if m > 4
and β2,m(S/JG) = m− 1.

Let e = {u, v} be an edge in G such that u is a pendant vertex of G. Since e is a cut edge
and u is a pendant vertex of G, (G \ e)e = (G \ u)v ⊔ {u}. Thus, JG\e : fe = J(G\u)v . Since
G \ e is also a unicyclic graph having the unique cycle Cm and JG\e = JG\u, by induction we
get a minimal generating set of the first syzygy of JG\e as

(a) fi,je{k,l} − fk,le{i,j}, where {i, j}, {k, l} ∈ E(G \ e) and {i, j} 6= {k, l},
(b) (−1)pA(j)fk,le{i,j} + (−1)pA(k)fj,le{i,k} + (−1)pA(l)fj,ke{i,l}, where A = {i, j, k, l} ∈ CG\e

with center at i,
(c)

∑m−1
k=1 (bi)ke{k,k+1} − (bi)me{1,m}, where 1 ≤ i ≤ m− 1.

Now, we apply the mapping cone construction to the short exact sequence (1). Let
(G., dG.) and (F., dF.) be minimal free resolutions of [S/(JG\e : fe)](−2) and S/JG\e re-

spectively. Then, G1 ≃ Sn−1+(degG(v)−1
2 ), F1 ≃ Sn−1 and F2 ≃ Sβ2(S/JG\e).

Denote the standard basis of G1 by S1 ∪ S2, where S1 = {E{i,j} : {i, j} ∈ E(G \ e)}
and S2 = {E{k,l} : k, l ∈ NG(v) \ u}. Note that |S1| = n − 1 and |S2| =

(

degG(v)−1
2

)

. Set

dG1 (E{i,j}) = fi,j for a basis element E{i,j}. Also, let {e{i,j} : {i, j} ∈ E(G\e)} be the standard
basis of F1. By the mapping cone construction, the map from G0 to F0 is given by the
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multiplication by fe. Now, we define ϕ1 from G1 to F1 by ϕ1(E{i,j}) = fe ·e{i,j} for E{i,j} ∈ S1

and ϕ1(E{k,l}) = (−1)pA(k)+pA(u)+1fu,le{v,k} + (−1)pA(l)+pA(u)+1fu,ke{v,l} for E{k,l} ∈ S2. We
need to prove that dF1 (ϕ1(x)) = fe ·dG1 (x) for any element x ∈ G1. For a claw {v, u, k, l} with
center at v, we have the relation (−1)pA(k)+pA(u)+1fu,lfv,k+(−1)pA(l)+pA(u)+1fu,kfv,l = fk,lfu,v.
This yields us the equality dF1 (ϕ1(E{i,j})) = fu,v · dG1 (E{i,j}) for a basis E{i,j} of G1. So the
mapping cone construction gives us a S-free presentation of JG as

F2 ⊕G1 −→ F1 ⊕G0 −→ F0 −→ JG −→ 0.

Since F2 ⊕ G1 ≃ Sβ2(S/JG) and F1 ⊕ G0 ≃ Sn, this is a minimal free presentation. Hence,
the first syzygy of JG is minimally generated by the images of basis elements under the map
Φ : F2 ⊕ G1 −→ F1 ⊕ G0. Now, the assertion can be proved just as done in the proof of
Theorem 3.5. �

If e = {u, v} is a cut-edge in G such that both u and v are simplicial vertices, then the
mapping cone construction on the exact sequence (1) gives a minimal free resolution of S/JG,
[14, Proposition 3.2]. However, this is not a necessary condition as we see below.

Proposition 3.8. Let n ≥ 3. Then, the minimal free resolution of S/JK1,n is given by the
mapping cone of S/JK1,n−1 and S/JKn

(−2).

Proof. Let V (K1,n) = {1, . . . , n, n + 1} with E(K1,n) = {{i, n + 1} : 1 ≤ i ≤ n}. For
G = K1,n and e = {n, n+ 1}, note that JG\e = JK1,n−1 and JK1,n−1 : fe = JKn

. Since K1,n is
a tree, it follows from [6, Theorem 1.1] that pd(S/JK1,n) = n. Also, by [24, Corollary 2.3],
βi,i+1(S/JK1,n) = 0 for 2 ≤ i ≤ n. Since reg(S/JK1,n) = 2, [25], and reg(S/JKn

) = 1, [24],
βi,i+j(S/JK1,n) = 0 for j 6= 2 and βi,i+j(S/JKn

) = 0 for j 6= 1. Corresponding to (1), we have
the long exact sequence for all j ≥ 1,

· · · → TorSi,i+j

(

S

JK1,n−1

,K

)

→ TorSi,i+j

(

S

JK1,n

,K

)

→ TorSi−1,i+j−2

(

S

JKn

,K

)

→ · · · .

Hence, βi,j(S/JK1,n) = βi,j(S/JK1,n−1) + βi−1,j−2(S/JKn
). If G· denotes a minimal free reso-

lution of S/JKn
(−2) and F· denotes a minimal free resolution of S/JK1,n−1, then the above

equality implies that βi(S/JK1,n) = rankFi + rankGi−1. Hence, the mapping cone gives a
minimal free resolution of S/JK1,n. �

4. Rees Algebra

Let G be a graph on [n] and JG be its binomial edge ideal. Let R = S[T{i,j} : {i, j} ∈
E(G) with i < j]. Let δ : R→ S[t] be the S-algebra homomorphism given by δ(T{i,j}) = fi,jt.
Then, Im(δ) = R(JG) and ker(δ) is called the defining ideal of R(JG). We first characterize
graphs whose binomial edge ideals are almost complete intersection. We begin by proving
couple of simple lemmas which are useful for our main results.

Lemma 4.1. Let I be a radical ideal in a Noetherian commutative ring A. Then, for any
f ∈ A and n ≥ 2, I : f = I : fn.

Proof. Let f ∈ A be an element. Observe that for any n ≥ 2, I : f ⊂ I : fn. Let g ∈ I : fn.
Then, gfn ∈ I which implies that gnfn ∈ I. Therefore, gf ∈

√
I = I. Hence, g ∈ I : f . �

Lemma 4.2. If I ⊆ A = K[t1, . . . , tn] is a homogeneous ideal such that I = J + (a),
where J is generated by a homogeneous regular sequence, a is a homogeneous element and
J : a = J : a2, then I is either a complete intersection or an almost complete intersection.
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Proof. The proof for Theorem 4.7(ii) in [8] is for the local case for the same statement, but
it can be easily seen that it goes through for homogeneous ideals in A. �

We first characterize the trees whose binomial edge ideals are almost complete intersec-
tions.

Theorem 4.3. If G is a tree which is not a path, then JG is an almost complete intersection
ideal if and only if G is obtained by adding an edge between two vertices of two paths.

Proof. Suppose G is obtained by adding an edge e between paths Pn1 and Pn2 . Then, JG\e

is a complete intersection ideal and JG = JG\e + feS. By Theorem 2.1(a), and Lemma 4.1,
we get JG\e : f 2

e = JG\e : fe. Therefore, it follows from Lemma 4.2 that JG is an almost
complete intersection.

Now, assume that G is not a graph obtained by adding an edge between two paths.
Therefore, either there exists a vertex v such that degG(v) ≥ 4 or there exist z, w ∈ V (G)
such that degG(z) ≥ 3, degG(w) ≥ 3 and {z, w} /∈ E(G). Let T = {v} in the first case and
T = {z, w} in the second case. By Theorem 2.1, ht(PT (G)) = n − cT + |T |. Since z and w
are of degrees at least 3, {z, w} /∈ E(G) and G is a tree, cT ≥ 5. Hence, ht(PT (G)) ≤ n− 3.
Now, if T = {v}, then cT ≥ 4 so that ht(PT (G)) ≤ n− 3. Note that in both cases T has the
cut point property so that PT (G) is a minimal prime, by Theorem 2.1. Thus, ht(JG) ≤ n−3.
Since µ(JG) = n− 1, µ(JG) > ht(JG) + 1. Hence, JG is not an almost complete intersection
ideal. �

Now, we have characterized the almost complete intersection trees, we move on to graphs
containing cycles.

Theorem 4.4. Let G be a connected graph on [n] which is not a tree. Then, JG is an almost
complete intersection ideal if and only if G is obtained by adding an edge between two vertices
of a path or by attaching a path to each vertex of C3.

Proof. First assume that JG is an almost complete intersection ideal. Therefore, µ(JG) =
ht(JG) + 1. Since ht(JG) ≤ n− 1, it follows that µ(JG) ≤ n. Since G is not a tree, we have
µ(JG) = n. Therefore, G is a unicyclic graph and ht(JG) = n− 1. Let u be a vertex which
does not belong to the unique cycle in G. If degG(u) ≥ 3, then for T = {u}, by Theorem
2.1(d), PT (G) is a minimal prime of JG of height ≤ n − 2 which contradicts the fact that
ht(JG) = n−1. Hence, degG(u) ≤ 2. Now, we claim that degG(u) ≤ 3, for every u belonging
to vertex set of the unique cycle in G. If degG(u) ≥ 4 for such a vertex u, then G \ u has
at least three components so that for T = {u}, PT (G) is a minimal prime of JG of height
≤ n − 2 which is a contradiction. Hence, degG(u) ≤ 3. If the girth of G is 3, then clearly
it belongs to one of the categories described in the theorem. We now assume that girth
of G is ≥ 4. Suppose u, v be two vertices of the unique cycle in G with degG(u) = 3 and
degG(v) = 3. If {u, v} /∈ E(G), then for T = {u, v}, PT (G) is a minimal prime of JG of
height ≤ n− 2 which is again a contradiction. Therefore, {u, v} ∈ E(G). Thus, the number
of vertices of the cycle having degree three is at most 2 and if two vertices of the cycle have
degree three, then they are adjacent. Therefore, G is obtained by adding an edge between
two vertices of a path.

Now assume that G is a graph obtained by adding an edge between two vertices, say u
and v, of a path. Let e = {u, v}. Observe that JG\e is a complete intersection ideal. By
Theorem 2.1(a) and Lemma 4.1, JG\e : f

2
e = JG\e : fe. Thus, it follows from Lemma 4.2 that

JG is an almost complete intersection ideal.



14 A. V. JAYANTHAN, ARVIND KUMAR, AND RAJIB SARKAR

Now, suppose G is a graph obtained by adding a path to each of the vertices of a C3. Then,
by [6, Theorem 1.1], S/JG is Cohen-Macaulay of dimension n+1. Therefore, ht(JG) = n−1 =
µ(JG)−1. Now, we have to prove that if p is a minimal prime of JG, then (JG)p is a complete
intersection ideal of Sp, i.e. µ((JG)p) = ht((JG)p) = n− 1. Let p be a minimal prime of JG.
It follows from [10, Corollary 3.9] that there exists T ⊂ [n] having cut point property such
that p = PT (G). By Theorem 3.3, the minimal presentation of JG is

S(−4)β2,4(S/JG) ⊕ S(−3)β2,3(S/JG) ϕ−→ S(−2)n −→ JG −→ 0.

Moreover, the linear relations given in Theorem 3.6(a) show that (xv1 , yv1 , xv2 , yv2, xv3 , yv3) ⊂
I1(ϕ), the ideal generated by the entries of the matrix of ϕ. Now, if I1(ϕ) ⊂ p, then
(xv1 , yv1 , xv2 , yv2, xv3 , yv3) ⊂ p. Thus, {v1, v2, v3} ⊂ T , which is a contradiction to the fact
that T has the cut point property. Therefore, I1(ϕ) 6⊂ p, and hence, by [2, Lemma 1.4.8],
µ((JG)p) ≤ n − 1. If µ((JG)p) < n − 1, then by [18, Theorem 13.5], ht(p) < n − 1, which
is a contradiction. Thus, µ((JG)p) = n − 1. Hence, JG is an almost complete intersection
ideal. �

Below, we give representatives of four different types of graphs whose binomial edge ideals
are almost complete intersection ideals.

We now study the Rees algebra of almost complete intersection binomial edge ideals. We
prove that they are Cohen-Macaulay and we also obtain the defining ideals of these Rees
algebras. We first recall a result which characterizes the Cohen-Macaulayness of the Rees
algebra and the associated graded ring.

Theorem 4.5. [9, Corollary 1.8] Let A be a Cohen-Macaulay local (graded) ring and I ⊂ A
be a (homogeneous) almost complete intersection ideal in A. Then,

(a) grA(I) is Cohen-Macaulay if and only if depth(A/I) ≥ dim(A/I)− 1.
(b) R(I) is Cohen-Macaulay if and only if ht(I) > 0 and grA(I) is Cohen-Macaulay.

Therefore, in our situation, to prove that R(JG) is Cohen-Macaulay, it is enough to prove
that depth(S/JG) ≥ dim(S/JG)− 1.

4.1. Discussion. Suppose G is a unicyclic graph such that JG is almost complete intersec-
tion. We may assume that G is not a cycle. If girth of G is 3, then by Theorem 4.4 and [6,
Theorem 1.1], S/JG is Cohen-Macaulay. Thus, grS(JG) is Cohen-Macaulay, and hence, so is
R(JG). Now, we assume that girth of G is at least 4 and n ≥ 5.
Let G1 and G2 denote graphs on the ver-
tex set [n] with edge sets given by E(G1) =
{{1, 2}, {2, 3}, . . . , {n−2, n−1}, {n−1, n}, {2, n−1}}
and E(G2) = {{1, 2}, {2, 3}, . . . , {n − 1, n}, {2, n}}.
If G is a unicyclic graph on [k], k ≥ 5, which is not
a cycle and having an almost complete intersection
binomial edge ideal, then by Theorem 4.4, G is ob-
tained by attaching a path to each of the pendant
vertices of G1 or G2.

n2

1n1

2 n− 1

G1 G2
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Let G denote the graph obtained by identifying the vertex 1 of Gi and a pendant vertex of
Pm. Then, by [22, Theorem 2.7], depth(S/JG) = depth(Si/JGi

)+depth(SP/JPm
)− 2, where

Si denotes the polynomial ring corresponding to the graph Gi and SP denotes the polynomial
ring corresponding to the graph Pm. Since JPm

is generated by a regular sequence of length
m − 1, depth(SP/JPm

) = m + 1. Also dim(S/JG) = n + m. Therefore, to prove that
depth(S/JG) ≥ n + m − 1, it is enough to prove that depth(Si/JGi

) ≥ n. Similarly, if
G is obtained by attaching a path to each of the pendant vertices of G1, then to prove
depth(S/JG) ≥ dim(S/JG)−1, it is enough to prove that depth(S1/JG1) ≥ dim(S1/JG1)−1.
We now proceed to prove this.

Let G be a graph on [n] with binomial edge ideal JG ⊂ S = K[x1, . . . , xn, y1, . . . , yn].
We consider S with lexicographical order induced by x1 > · · · > xn > y1 > · · · > yn. It
follows from [10, Theorem 2.1] that in<(JG) is a squarefree monomial ideal so that by [3,
Corollary 2.7], we get depth(S/JG) = depth(S/ in<(JG)). Hence, to compute depth(S/JG),
we compute the depth of S/ in<(JG).

Now, consider the graphs G1 and G2 as defined above. It follows from the labeling of
the vertices of G1 that the admissible paths in G1 are the edges and the paths of the form
i, i − 1, . . . , 3, 2, n − 1, n − 2, . . . , j with 2 ≤ j − i ≤ n − 4, [10, Section 2]. Similarly the
admissible paths in G2 are the edges and the paths of the form i, i−1, . . . , 3, 2, n, n−1, . . . , j
with 2 ≤ j − i ≤ n− 3. Consequently, the corresponding initial ideals are given by

in<(JG1) =
(

{x1y2, . . . , xn−1yn, x2yn−1, xixj+1 · · ·xn−1y2 · · · yi−1yj : 2 ≤ j − i ≤ n− 4}
)

and

in<(JG2) =
(

{x1y2, . . . , xn−1yn, x2yn, xixj+1 · · ·xny2 · · · yi−1yj : 2 ≤ j − i ≤ n− 3}
)

.

We denote these monomials of degree ≥ 3 by v1, . . . , vp. We order these monomials such that
i < j if either deg vi < deg vj or deg vi = deg vj and vi >lex vj . Set J = (x1y2, . . . , xn−1yn),
I0(G1) = J + (x2yn−1), I0(G2) = J + (x2yn) and, for 1 ≤ k ≤ p, Ik(Gi) = Ik−1(Gi) + (vk) for
i = 1, 2. Then Ip(Gi) = in<(JGi

) for i = 1, 2. We now compute the projective dimension,
equivalently depth, of these ideals.

Lemma 4.6. For 0 ≤ k ≤ p and i = 1, 2, pd(S/Ik(Gi)) ≤ n.

Proof. We prove the assertion by induction on k. If k = 0, then consider the following exact
sequences:

0 −→ S

J : (x2yn−1)
(−2)

·x2yn−1−→ S

J
−→ S

I0(G1)
−→ 0

and

0 −→ S

J : (x2yn)
(−2)

·x2yn−→ S

J
−→ S

I0(G2)
−→ 0.

Note that J is generated by a regular sequence of length n− 1. Moreover

J : x2yn−1 = (x1y2, y3, x3y4, . . . , xn−3yn−2, xn−2, xn−1yn) and

J : x2yn = (x1y2, y3, x3y4, . . . , xn−3yn−2, xn−2yn−1, xn−1)

which are generated by regular sequences of length n− 1. Therefore

pd(S/J) = pd(S/(J : x2yn−1)) = pd(S/(J : x2yn)) = n− 1.

Hence, it follows from the long exact sequence of Tor that pd(S/I0(Gi)) ≤ n for i = 1, 2.
Now, assume that k > 0 and pd(S/Ik−1(Gi)) ≤ n for i = 1, 2. For i = 1, 2, consider the
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short exact sequences

0 −→ S

Ik−1(Gi) : (vk)
(− deg vk)

·vk−→ S

Ik−1(Gi)
−→ S

Ik(Gi)
−→ 0. (5)

We first prove the assertion for G1. It can be seen that the monomials vk’s are of the form

vk =







x2xj+1 · · ·xn−1yj for 4 ≤ j ≤ n− 2,
xiy2 · · · yi−1yn−1 for 3 ≤ i ≤ n− 3,
xixj+1 · · ·xn−1y2 · · · yi−1yj for 3 ≤ i; j ≤ n− 2 and 2 ≤ j − i.

If vi = x2xj+1 · · ·xn−1yj for some 4 ≤ j ≤ n− 2, then

Ik−1(G1) : vk = (I0(G1) : vk) + (v1, . . . , vk−1) : vk

= (x1y2, x3y4, . . . , xj−2yj−1, xjyj+1, xj−1, y3, yj+2, . . . , yn) + (v1, . . . , vk−1) : vk.

It can be seen that (v1, . . . , vk−1) : vk ⊆ (I0(G1) : vk) + (yj+1) and yj+1vk ∈ (v1, . . . , vk−1).
Hence,

Ik−1(G1) : vk = (x1y2, x3y4, . . . , xj−2yj−1, xj−1, y3, yj+1, . . . , yn).

This is a regular sequence of length n − 1. The proof that Ik−1(G1) : vk is generated by
a regular sequence of length n − 1 if vk is of the other two types is similar. Therefore
pd(S/(Ik−1(G1) : vk)) = n − 1. Hence, it follows from the short exact sequence (5) that
pd(S/Ik(G1)) ≤ n.

In a similar manner, using the short exact sequence (5) and the colon ideal, one can prove
that pd(S/Ik(G2)) ≤ n. �

We now show that the associated graded ring and the Rees algebra of almost complete
intersections binomial edge ideals are Cohen-Macaulay.

Theorem 4.7. If G is a graph such that JG is an almost complete intersection ideal, then
grS(JG) and R(JG) are Cohen-Macaulay.

Proof. Suppose JG is an almost complete intersection ideal. By Theorem 4.5(b), it is enough
to prove that grS(JG) is Cohen-Macaulay, if one wants to prove that R(JG) is Cohen-
Macaulay. Now, grS(JG) is Cohen-Macaulay if depth(S/JG) ≥ dim(S/JG) − 1, by Theo-
rem 4.5(a). If G is a tree, then it follows from [6, Theorem 1.1] and Theorem 4.3 that
depth(S/JG) = n + 1 = dim(S/JG)− 1. If G = Cn, then it follows from [28, Theorem 4.5]
that depth(S/JCn

) = dim(S/JCn
) − 1. Now, we assume that G is a unicyclic graph other

than cycle. It follows from Discussion 4.1 that it is enough to prove that depth(Si/JGi
) ≥ n

for i = 1, 2. From [3, Corollary 2.7], we get depth(Si/JGi
) = depth(Si/ in>(JGi

)). It fol-
lows from Lemma 4.6 that depth(Si/ in>(JGi

)) = depth(Si/Ip(Gi)) ≥ n. This completes the
proof. �

We now study binomial edge ideals which are of linear type. Since complete intersections
are of linear type, binomial edge ideals of paths are of linear type. Now, we show that the
JK1,n is of linear type. For this purpose, recall the definition of d-sequence.

Definition 4.8. Let A be a commutative ring. Set d0 = 0. A sequence of elements d1, . . . , dn
is said to be a d-sequence if (d0, d1, . . . , di) : di+1dj = (d0, d1, . . . , di) : dj for all 0 ≤ i ≤ n−1
and for all j ≥ i+ 1.

We refer the reader to the book [12] by Swanson and Huneke for more properties of
d-sequences.



ALMOST COMPLETE INTERSECTION BINOMIAL EDGE IDEALS AND THEIR REES ALGEBRAS 17

Proposition 4.9. The binomial edge ideal of K1,n is of linear type.

Proof. Let K1,n denote the graph on [n+ 1] with the edge set {{i, n+ 1} : 1 ≤ i ≤ n}. We
claim that JK1,n is generated by the d-sequence d1, d2, . . . , dn, where di = xiyn+1 − xn+1yi.
Let 1 ≤ i ≤ n − 1 and Ki+1 denote the complete graph on the vertex set {1, . . . , i, n + 1}.
Then, for j ≥ i+ 1,

(d0, d1, . . . , di) : di+1dj = ((d0, d1, . . . , di) : di+1) : dj = JKi+1
: dj = JKi+1

,

also (d0, d1, . . . , di) : dj = JKi+1
, where the last two equalities follow from [19, Theorem 3.7].

Therefore, JK1,n is generated by a d-sequence. Hence, by [12, Corollary 5.5.5], JK1,n is of
linear type. �

We now prove that in the polynomial ring over an infinite field, almost complete intersec-
tion homogeneous ideals are generated by d-sequences.

Proposition 4.10. If I ⊂ A = K[t1, . . . , tn] is a homogeneous almost complete intersection,
where K is infinite, then I is generated by a homogeneous d-sequence f1, . . . , fh+1 such that
f1, . . . , fh is a regular sequence, where h = ht(I).

Proof. Since I is an almost complete intersection ideal, by [4, Proposition 5.1(i)], there exists
a homogeneous system of generators {f1, . . . , fh+1} of I such that f1, . . . , fh is a regular
sequence. Let J = (f1, . . . , fh). Since A is regular, J is unmixed. It follows from [4,
Proposition 5.1(ii)] and the proof of [8, Theorem 4.7] that J : fh+1 = J : f 2

h+1. Therefore,
f1, . . . , fh+1 is a homogeneous d-sequence. �

In the above Lemma, the assumption that K is infinite is required in Proposition 5.1 of
[4]. We assume that K is infinite for the following result as well.

Corollary 4.11. Let G be a graph on [n]. If JG is an almost complete intersection ideal,
then JG is generated by a d-sequence. In particular, JG is of linear type.

Proof. If JG is an almost complete intersection, then it follows from Proposition 4.10 that JG
is generated by a d-sequence. The second assertion that JG is of linear type is a consequence
of [11, Theorem 3.1]. �

If G is a tree or a unicyclic graph of girth ≥ 4 such that JG is an almost complete
intersection, then one can show that the minimal generators consisting of the binomials
corresponding to the edges of G form a d-sequence.

Remark 4.12. Suppose G is a tree such that JG is almost complete intersection. Then, by
Theorem 4.3, G is obtained by adding an edge between two paths, say Pn1 and Pn2 . Let e
denote the edge between Pn1 and Pn2 . Note that G \ e is the disjoint union of two paths.
Assume now that G is a unicyclic graph with unique cycle Cm, m ≥ 4, such that JG is
almost complete intersection. Then, by Theorem 4.4, G is obtained by adding an edge e
between two vertices of a path. Thus, in both the cases, JG\e is complete intersection, by [6,
Corollary 1.2]. Since JG\e is a radical ideal, by Lemma 4.1, JG\e : f

2
e = JG\e : fe. Hence, JG

is generated by a d-sequence. It may also be observed that we do not require the assumption
that K is infinite in this case.

If G is obtained by adding a path each to the vertices of a C3, then, it can be seen that JG\e

is not a complete intersection for any edge e ∈ E(G). Thus, the binomials corresponding to
the edges of G do not form a d-sequence with first n−1 of them forming a regular sequence.
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But at the same time, Proposition 4.10 ensures the existence of such a generating set. We
have not been able to explicitly construct one such.

As a consequence of Remark 4.12, we obtain the defining ideal of the Rees algebra of
binomial edge ideals of cycles.

Corollary 4.13. Let ϕ : S[T{1,n}, T{i,i+1} : i = 1, . . . , n − 1] −→ R(JCn
) be the map defined

by ϕ(T{i,j}) = fi,jt. The defining ideal of R(JCn
), the kernel of ϕ, is minimally generated by

{

fi,jT{k,l} − fk,lT{i,j} : {i, j} 6= {k, l} ∈ E(G)
}

∪
{

n−1
∑

k=1

(bi)kT{k,k+1} − (bi)nT{1,n} : 1 ≤ i ≤ n− 1

}

,

where bi’s are as defined in Theorem 3.5.

Proof. Let

S(−4)(
n
2) ⊕ S(−n)n−1 φ−→ S(−2)n −→ JCn

−→ 0

be the minimal presentation of JCn
given in the proof of Theorem 3.5. Since JCn

is of linear
type (Remark 4.12), it follows from [12, Exercise 5.23] that the defining ideal of R(JCn

) is
generated by TA, where A is the matrix of φ and T = [T{1,2}, . . . , T{n−1,n}, T{1,n}]. Hence,
the assertion follows directly from Theorem 3.5. �

Remark 4.14. Suppose G is a unicyclic graph of girth m ≥ 4 or a tree. If JG is almost
complete intersection, then by Remark 4.12, JG is of linear type. Therefore, as in Corollary
4.13, we can conclude that the defining ideal of R(JG) is generated by TA, where T is the
matrix consisting of variables and A is the matrix of the presentation of JG. Hence, we
obtain a minimal set of generators for the defining ideal of R(JG) by replacing the e{i,j}’s
by T{i,j}’s in the list of generators given in the statements in Theorems 3.2, 3.7. In a similar
manner, using Proposition 4.9 and using a minimal presentation of JK1,n, one can obtain the
minimal generators of the defining ideal of the Rees algebra, R(JK1,n). If K is infinite, then
one can derive similar conclusions for unicyclic graphs of girth 3 as well.

Remark 4.15. We have shown that if G is a tree with an almost complete intersection
binomial edge ideal JG, then JG is of linear type. It would be interesting to know whether
binomial edge ideals of trees, or more generally all bipartite graphs, are of of linear type.
Here we give an example to show that JG need not be of linear type for all bipartite graphs.
Let G be the graph as given on the right. Then, it can be seen
(for example, using Macaulay 2 [7]) that the defining ideal of JG is
not of linear type. If δ : S[T{i,j} : {i, j} ∈ E(G)] −→ R(JG) is the
map given by δ(T{i,j}) = fi,jt, then x8T{1,6}T{3,4} − x6T{1,8}T{3,4} +
x8T{1,4}T{3,6}−x4T{1,8}T{3,6}−x6T{1,4}T{3,8}+x4T{1,6}T{3,8} is a min-
imal generator of ker(δ).

1

2 4 6 8

3 5 7

It will be interesting to obtain an answer to:

Question 4.16. Classify all bipartite graphs whose binomial edge ideals are of linear type.

Note that the above bipartite graph is not a tree. We have enough experimental evidence
to pose the following conjecture:

Conjecture 4.17. (a) If G is a tree or a unicyclic graph, then JG is of linear type.
(b) Rs(JCn

) = R(JCn
), where Rs(JCn

) denote the symbolic Rees algebra of JCn
.
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