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One of the important parameters in cosmology is the parameter characterizing the equation of
state (EOS) of the sources driving the cosmic expansion. Epochs that are dominated by radiation,
matter or scalar fields, whether they are probed either directly or indirectly, can be characterised by
a unique value of this parameter. However, the EOS parameter during reheating a phase succeeding
inflation which is supposed to rapidly defrost our Universe–remains to be understood satisfactorily.
In order to circumvent the complexity of defining an instantaneous EOS parameter during reheating,
an effective parameter weff , which is an average of the EOS parameter over the duration of reheating,
is usually considered. The value of weff is often chosen arbitrarily to lie in the range −1/3 ≤ weff ≤ 1.
In this work, we consider the time evolution of the EOS parameter during reheating and relate
it to inflationary potentials V (φ) that behave as φp around the minimum, a proposal which can
be applied to a wide class of inflationary models. We find that, given the index p, the effective
EOS parameter weff is determined uniquely. We discuss the corresponding effects on the reheating
temperature and its implications.

I. INTRODUCTION

In order to explain the current observable Universe, the
conventional hot big bang model requires very fine tuned
initial conditions during the radiation dominated epoch.
This difficulty can be overcome if we assume that the
universe went through a brief phase of nearly exponential
expansion–an epoch dubbed as inflation–in its very early
stages [1–3]. Apart from explaining the observed extent of
isotropy of the cosmic microwave background (CMB) [4–
7], inflation also provides a natural mechanism to gen-
erate the small anisotropies superimposed on the nearly
isotropic background [8–11]. It is these CMB anisotropies
which act as the seeds for the eventual formation of the
large scale structure in the Universe [12].

But, due to the accelerated expansion, inflation makes
the universe cold and dilute. To be consistent with big
bang nucleosynthesis (BBN), the Universe must consist
of radiation and matter in thermal equilibrium, when its
temperature is around 10MeV [13–15]. Inflation is typi-
cally driven with the aid of scalar fields, often referred to
as the inflaton. At the termination of inflation, the energy
from the inflaton is supposed to be transferred to the par-
ticles constituting the standard model through a process
called reheating [16–19]. During this phase of reheating,
the inflaton is expected to rapidly decay producing matter
and radiation in equilibrium, thereby setting the stage
for the conventional hot big bang evolution.
The original mechanism for reheating, suggested soon

after the idea of inflation was proposed, was based on
the perturbative decay of the inflaton [16–19]. However,
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about a decade later, it was realized that the perturbative
mechanism does not capture the complete picture, as the
decay of the inflaton was found to be dominated by non-
perturbative processes. Importantly, it was recognized
that, immediately after the termination of inflation, the
inflaton acts like a coherently oscillating condensate which
leads to parametric resonance of the fields coupled to the
inflaton [20–24]. In fact, the initial stage of reheating is
referred to as preheating, to distinguish it from the later
stage of perturbative decay.

The details of the perturbative as well as the non-
perturbative processes taking place during reheating can
be non-trivial and will actually depend upon the various
fields that are taken into account and the nature of their
interactions. Moreover, the lack of direct observables
that can reveal the dynamics during this phase poses
additional challenges towards understanding the mecha-
nism of reheating. In such a situation, as a first step, it
would be convenient to characterise the phase through an
equation of state (EOS) parameter w which captures the
background evolution and, consequently, the dilution of
the energy density of the fields involved, without going
into the complexity of models and interactions. After
all, the different epochs of the Universe–viz. inflation,
radiation and matter domination as well as late time
acceleration — are often simply characterized in terms
of the corresponding EOS parameter (in this context,
see Fig. 1). One widely adopted approach is to define
an effective EOS parameter weff , which is an average of
the instantaneous EOS parameter during the period of
reheating [25]. Although the averaging washes out the
details of the microphysics over the intermediate stages, it
allows us to conveniently characterize the reheating phase
in terms of two other vital observables, viz. the duration
of the phase and the reheating temperature. While such
an approach may be adequate as a first step, needless to
add, it is important to characterize and understand the
dynamics of reheating in further detail.
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FIG. 1. A schematic timeline of cosmic evolution, with each
epoch described by its respective EOS parameter. The quanti-
ties Nend, NBBN

, Neq and NΛ refer to the e-folds corresponding
to the end of inflation, the epochs of BBN, radiation-matter
equality and the beginning of Λ domination, respectively. Note
that, however, Nco and Nre refer to the duration of the phases
of coherent oscillations and reheating.

As we mentioned, at the end of inflation, the inflaton
starts to oscillate about the minimum of the potential.
During the initial stages of this phase, most of the energy
is stored in the coherently oscillating scalar field. It
can be shown that the EOS parameter of a homogeneous
condensate oscillating in a potential which has a minimum
of the form V (φ) ∝ φp is given by wco = (p−2)/(p+2) [26–
28]. (For a brief discussion in this context for the case
of p = 2, see App. A.) However, in the process, the
homogeneous condensate fragments leading to the growth
of the inhomogeneities [29–32]. As a result, the EOS
parameter differs from the above-mentioned form. The
time when the EOS starts to change from its form during
the period of coherent oscillations is referred to in the
literature as the onset of the phase of backreaction [33,
34]. The effects of fragmentation on the EOS can be
studied using lattice simulations and one finds that the
EOS parameter indeed eventually approaches that of the
radiation dominated phase (i.e. w → 1/3), as required [34–
36]. Evidently, the average weff during reheating will
depend on the time evolution of the EOS parameter from
the end of coherent oscillations to the start of the radiation
domination epoch. Usually, the value of weff during this
phase is either identified to be the value wco during the
coherent oscillation phase or chosen arbitrarily to lie in
the range −1/3 ≤ weff ≤ 1 [37].

In this work, we examine the time evolution of the EOS
parameter and its average weff during reheating. We con-
sider the time evolution of the EOS from the end of the
coherent oscillation stage until the onset of the radiation
domination epoch. We argue that the presence of gradi-
ent and/or interaction energy of the inflaton leads to the
deviation of the EOS parameter from its value wco during
the period of coherent oscillations. Not surprisingly, we
find that, even after the phase of coherent oscillations, the
shape the inflationary potential near its minimum plays
a role in the time evolution of the EOS. We shall assume
that, near their minima, the inflationary models of our
interest have the following form: V (φ) ∝ φp. We should
point out here that large field models which are completely

described by such power law potentials are already ruled
out due to the constraints from the CMB data on the
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FIG. 2. A schematic diagram illustrating the behavior of
typical inflationary potentials of our interest around their
minima. We have plotted the potentials for the cases of the
Starobinsky model (in blue), the so-called α-attractor T -model
(in green) and the quadratic potential (in orange). Away from
the minimum, at large field values, the presence of a plateau
in the potentials (such as in the Starobinsky and T -models)
ensure that the inflationary predictions are consistent with
the CMB observations. Around the minimum, the potentials
behave as V (φ) ∝ φp, which permits coherent oscillations
during the initial stages of reheating.

primary inflationary observables, viz. the scalar spectral
index n

S
and tensor-to-scalar ratio r [38–40]. In contrast,

potentials that contain a plateau, such as the original
Starobinsky model, which lead to smaller values of r are
favored by the CMB data. However, such potentials too
can be expressed as V (φ) ∝ φp around the minima (in this
context, see Fig. 2 wherein we have schematically illus-
trated the potentials for p = 2). Motivated by results from
lattice simulations, in order to capture the microphysics
during reheating and, specifically, the turbulent backreac-
tion phase, we propose an evolving EOS parameter, which
asymptotically approaches its value during the radiation
dominated epoch from its value at the end of the phase
of coherent oscillations. With such a time evolving EOS
parameter, we establish a link between the value of weff

and the inflationary potential parameters. This allows
us to connect the reheating temperature uniquely to the
inflationary parameters, while, importantly, accounting
for the time evolution of the EOS.

The remainder of the paper is structured as follows. In
Sec. II, we shall provide a rapid overview of reheating
and connect the parameters describing the phase with
the observables in the CMB. In Sec. III, we shall first
briefly highlight the motivations for accounting for the
time-dependence of the EOS during reheating. With the
help of specific examples, we shall also present results
from lattice simulations illustrating the time evolution of
the EOS parameter from the end of the coherent oscilla-
tion phase to the onset of the radiation dominated epoch.
We shall then go on to consider two types of parametriza-
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tions for the EOS parameter and arrive at the associated
effective EOS parameter. In Sec. IV, we shall apply these
arguments to the so-called α-attractor model of inflation
and evaluate the corresponding reheating temperatures
for these models. We shall conclude with a brief summary
of our results in Sec. V.

II. CONNECTING THE REHEATING PHASE

WITH THE CMB OBSERVABLES

While the period of reheating is phenomenologically
rich, as we mentioned, it is difficult to observationally
constrain the dynamics due to the paucity of direct ac-
cess to that epoch. Another difficulty arises due to the
fact that by the time of BBN, all the particles associ-
ated with the standard model are expected to have been
thermalized, thereby possibly hiding away the details of
their production. Despite these limitations, one finds
that reheating can still be constrained to a certain ex-
tent from the CMB and BBN observables. The upper
bound on the inflationary energy scale, inferred from
the constraints on the tensor-to-scalar ratio r (arrived
at originally from the WMAP data [38] and improved
upon later by the Planck data [39, 40]), is closer to the
GUT scale of about 1016 GeV, whereas BBN requires a
radiation dominated Universe at around 10MeV [13–15].
The inflationary observables are either well measured or
have bounds on them, while the physics of BBN have
been tested with great precision. Thus, there is a huge
window in energy scales of several order of magnitudes
which remains unconstrained by the cosmological data.

However, as has been pointed out in the literature, a
connection can be made between the reheating phase and
the CMB observables measured today [37, 41, 42]. As
it proves to be essential for our discussion later on, we
shall quickly summarize the primary arguments in this
section. Recall that, during inflation, a scale of interest
described by the comoving wave number k leaves the
Hubble radius at the time when k = akHk. Let this
time correspond to, say, Nk, e-folds before the end of

inflation. For instance, the Planck team choose their
pivot scale to be k = 0.05Mpc−1 and assume Nk ≃ 50 for
this scale [39, 40]. The physical wave number k/ak at the
time when it exits the Hubble radius during inflation can
be related to its corresponding value k/a0 at the present
time as follows:

k

akHk
=

k

a0Hk

a0
are

are
aco

aco
aend

aend
ak

, (1)

where aend, aco and are are the values of the scale factor
when inflation, the phase of coherent oscillations and
reheating end, respectively. Since eNk = aend/ak, e

Nco =
aco/aend and eNre = are/aco, we can express the above
equation as

Nk +Nco +Nre + ln

(

a0
are

)

+ ln

(

k

a0Hk

)

= 0, (2)

where, evidently, Nco and Nre denote the durations of the
phase of coherent oscillations and the backreaction phase.
At the end of reheating, the Universe is supposed to

be radiation dominated and if no significant entropy is
released into the primordial plasma, we can relate the
reheating temperature, say, Tre, to the present CMB tem-
perature, say, T0, as follows (see, for example, Ref. [37]):

Tre
T0

=

(

43

11 gs,re

)1/3
a0
are

, (3)

where gs,re denotes the effective number of relativistic
degrees of freedom that contribute to the entropy during
reheating. We should mention that, to arrive at the above
expression, we have expressed the neutrino temperature
in terms of the temperature T0 of the CMB using the
relation Tν0 = (4/11)1/3 T0. On using Eqs. (2) and (3),
we can express the reheating temperature as

Tre =

(

43

11 gs,re

)1/3 (
a0 T0
k

)

Hk e
−Nk e−Nco e−Nre . (4)

Let us now assume that the backreaction phase suc-
ceeding the period of coherent oscillations is described
by the time-dependent EOS parameter w(N). In such a
case, from the conservation of energy, the cosmic energy
density during the phase can be expressed as

ρ(N) = ρco exp

{

−3

∫ N

0

dN ′ [1 + w (N ′)]

}

, (5)

where ρco is the energy density at the end of the coherent
oscillation phase. On defining an averaged EOS parameter
as

weff =
1

Nre

∫ Nre

0

dN ′ w(N ′), (6)

we can rewrite the above expression as

ln

(

ρco
ρre

)

= 3 (1 + weff)Nre, (7)

where Nre denotes the number of e-folds during the back-
reaction phase counted from the end of the period of
coherent oscillations.
If we now assume that, at the end of reheating, the

dominant component of energy is radiation, then we can
express the energy density of radiation in terms of Tre as

ρre ≡ ργ(Tre) =
π2 gre
30

T 4
re, (8)

where gre is the number of effective relativistic degrees
of freedom at the end of reheating. In such a case, upon
using Eqs. (7) and (8), we can readily express Tre as

Tre =

(

30 ρco
gre π2

)1/4

exp

[

−3

4
(1 + weff)Nre

]

. (9)
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From Eqs. (4) and (9), we can then arrive at the following
expression for the duration Nre of the phase of reheating:

Nre =
4

3weff − 1

[

Nk +Nco + ln

(

k

a0T0

)

+
1

4
ln

(

30

π2 gre

)

+
1

3
ln

(

11 gs,re
43

)

− ln

(

Hk

ρ
1/4
end

)

− 1

4
ln

(

ρend
ρco

)

]

, (10)

where ρend is the energy density of the inflaton at the end
of inflation. Since the EOS parameter during the phase
of coherent oscillations is wco = (p− 2)/(p+ 2), which is
obviously a constant for given value of p, we can express
ρco in terms of ρend as

ln

(

ρend
ρco

)

= 3

(

1 +
p− 2

p+ 2

)

Nco. (11)

Therefore, the duration of reheating Nre can finally be
expressed as

Nre =
4

3weff − 1

[

Nk +
(4− p)

2 (p+ 2)
Nco + ln

(

k

a0 T0

)

+
1

4
ln

(

30

π2 gre

)

+
1

3
ln

(

11 gs,re
43

)

− ln

(

Hk

ρ
1/4
end

)]

.

(12)

During inflation, the energy density of the inflaton can
be expressed in terms the potential V (φ) and the first

slow roll parameter ǫ = −Ḣ/H2 as

ρ = V

(

1 +
ǫ

3− ǫ

)

. (13)

Since inflation ends when ǫ = 1, we have ρend = (3/2)Vend,
where Vend denotes the potential at φend, viz. the value
of the scalar field at which inflation is terminated. Given
the potential V (φ), the value of φend can be readily de-
termined using the condition ǫ ≃ (M2

Pl
/2) (Vφ/V )2 = 1,

where the subscript on the potential denotes the derivative
with respect to the scalar field. Also, working in the slow
roll approximation, we can calculate the value of the scalar
field at Nk. This, in turn, can be utilized to express Nk
in terms of the inflationary observables, viz. the scalar
spectral index n

S
and tensor-to-scalar ratio r. Therefore,

the bounds on the inflationary parameters from the CMB
will lead to the corresponding constraints on the reheating
parameters as well (in this context, see Refs. [37, 42–50]).
However, note that the quantity Nco depends on the de-
tails of the inflationary model under investigation and,
importantly, on the coupling of the inflaton to the other
fields.

III. TIME-DEPENDENT EOS

As discussed earlier, the EOS parameter for the ho-
mogeneous condensate, oscillating about the minimum
of a potential behaving as V (φ) ∝ φp, is given by
wco = (p − 2)/(p + 2) [26, 27]. However, due to the
growth of inhomogeneities, the EOS parameter can be
expected to differ from the above value during the back-
reaction phase. We can study the resulting variation in
the EOS parameter by considering virialization of the
inhomogeneous system in equilibrium.
Consider a situation wherein the inflaton φ decays

into daughter fields collectively represented as F through
the interaction potential VI(φ,F). For a potential that
behaves as V (φ) ∝ φp near its minimum, one can show
that, in equilibrium, the following virial relations between
the kinetic, potential and the interaction energy densities
hold (in this context, see, for example, Refs. [34–36]):

1

2

〈

φ̇2
〉

=
1

2

〈 |∇φ|2
a2

〉

+
p

2
〈V (φ)〉+ 〈VI(φ,F)〉 ,

(14a)

1

2

〈

Ḟ2
〉

=
1

2

〈 |∇F|2
a2

〉

+ 〈VI(φ,F)〉 , (14b)

where the angular brackets indicate that the quantities
have been averaged over space as well as the period of
oscillation of the inflaton. During this backreaction phase,
one can define the instantaneous EOS averaged over the
spatial volume as

w =
1
2 φ̇

2 + 1
2 Ḟ2 − 1

6 a2 |∇φ|2 − 1
6 a2 |∇F|2 − VI(φ,F)

1
2 φ̇

2 + 1
2 Ḟ2 + 1

2 a2 |∇φ|2 + 1
2 a2 |∇F|2 + VI(φ,F)

.

(15)
Upon using the virial relations (14), we find that the
above expression for w reduces to

w =
1

3
+

(

p− 4

6

) (

p+ 2

4
+

〈ρG〉
〈V (φ)〉 +

3 〈VI(φ,F〉
2 〈V (φ)〉

)−1

,

(16)
where 〈ρG〉 = 〈|∇φ|2/(2 a2)〉+ 〈|∇F|2/(2 a2)〉 is the total
energy density associated with the spatial gradients in
the fields.
It should be clear from the above equation for w that,

as the gradient and the interaction energies begin to
dominate, the second term in the expression becomes
insignificant and the EOS parameter approaches 1/3. To
explicitly demonstrate these effects of the gradient and
interaction energy densities on the EOS parameter, in
Fig. 3, we have plotted the contours of fixed w from
Eq. (16) for potentials V (φ) which behave as φ2 and φ6

around their minima. There are two points that should
be evident from the figure. First, even a slight increase
in the gradient or interaction energy densities results
in a nonzero instantaneous EOS parameter. Second, as
we pointed out above, w asymptotically approaches 1/3,
as both the gradient and interaction energy densities
increase. As we shall illustrate in the following subsection,
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FIG. 3. The contours corresponding to constant EoS parameter w during reheating–as defined by Eq. (16)–have been plotted in
the 〈ρG〉–〈VI〉 plane for the case of potentials V (φ) which behave as φ2 (on the left) and φ6 (on the right) near their minima. In
order to make the axes dimensionless, we have divided both the axes by the quantity 〈ρT〉, which represents the total energy
density of the inflaton as well as the daughter fields. In plotting these contours, based on the results from lattice simulations, we
have assumed that the kinetic energy density constitutes 70% of the total energy density 〈ρT〉 [34]. However, we should hasten
to add that changing the level of contribution due to the kinetic energy density does not alter the qualitative nature of the plots.
As we have discussed, the transfer of energy to the daughter fields as well as the growth of inhomogeneities occur rapidly at
the end of the phase of coherent oscillations [35, 36]. Note that the plots clearly indicate that, as the contributions due to the
gradient and the interaction energy densities increase, w moves away from zero and eventually approaches 1/3.

these expectations are corroborated by lattice simulations
which allows one to track the EOS from the end of the
phase of coherent oscillations to the beginning of the
radiation dominated epoch (in this context, also see, for
instance, Refs. [34–36]). These simulations suggest that,
for p < 4, the EOS parameter monotonically increases
towards the asymptotic value of 1/3. Similarly, for p > 4,
one finds that it decreases monotonically towards 1/3.
From these arguments, we conclude that, in any realistic
scenario, the EOS during reheating must be different than
its value during the phase of coherent oscillations and
that a vanishing EOS parameter is highly unlikely during
this stage.

A. Specific examples of the time-dependent EOS

In order to understand the typical form of the evolution
of the EOS parameter, in this subsection, we shall present
the results of lattice simulations for a specific model. We
shall work with the so-called α-attractor T models whose
potentials are given by [51]

V (φ) = Λ4

∣

∣

∣

∣

tanhp
(

φ√
6αM

Pl

)∣

∣

∣

∣

. (17)

We shall assume that the inflaton decays into a
lighter scalar degree of freedom via a coupling of the
form (g2/2)φ2 χ2. For the values of the parameter α such
that α & 1, the preheating dynamics in the above models
are identical to that of the power law chaotic potentials

V (φ) ∝ |φ|p (in this context, also see Refs. [35, 36, 49]).
With the above forms of the potential and interaction,
we have solved for the coupled scalar field dynamics on a
2563 lattice using the parallel version of the lattice sim-
ulation code LATTICEEASY [52, 53]. We have set α = 1
and g2 = 3.5× 10−7, and have considered the following
five different values for the index describing the above
potential: p = (2, 3, 4, 5, 6). In these runs, the initial con-
ditions for the background are set at the instant when the
inflaton begins to oscillate near the bottom of the poten-
tial. The EOS parameter for the above two-field system
is obtained using Eq. (15). In Fig. 4, we have plotted
the variation of the oscillation averaged EOS parameter
against the number of e-folds from the time when we start
the simulations. As expected, we observe that, during
the initial coherent oscillation phase, the EOS parameter
is given by wco = (p − 2)/(p + 2). The EOS parameter
begins to change once the inhomogeneities start to grow
and it gradually tends towards w = 1/3 in all the cases
except for p = 2. We should point out that similar re-
sults from lattice simulations have also been arrived at
earlier (see, for instance, Ref. [54]). For the case of p = 2,
in the scenario involving two fields, one finds that the
final stage ends up being dominated by the inflaton itself,
which restricts the the EOS parameter from approaching
radiationlike behavior. Similar behavior has also been
encountered when one takes into account only the self-
resonance of the inflaton [35, 36]. However, the result for
the case of p = 2 must be viewed as a limitation of the
specific coupling and, as the results for the other cases
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FIG. 4. The EOS parameter obtained from lattice simulations
for the alpha-attractor T models described by the potential (17)
has been plotted as a function of e-folds for the cases wherein
p = (2, 3, 4, 5, 6). Notice that the EOS parameter starts with
the value of wco = (p− 2)/(p+ 2) and approaches w = 1/3 in
all the cases apart from the case of p = 2. In the case of p = 2,
it is known that the specific coupling we have considered is
not effective to achieve radiation domination [49]. Utilizing
Eq. (33), in the figure, we have also plotted wco = (p−2)/(p+2)
against Nco (as a dashed black curve) for the case of Rco = 25.
The locations of the intersection of the curve with the EOS
parameter indicate the onset of the backreaction phase for the
different indices p.

of p suggest, reheating can be expected to bring about
a radiation dominated Universe. We must note that, in
any realistic situation, reheating must lead to a radiation
dominated phase, else one has to invoke an additional
mechanism such as perturbative reheating to come to our
aid. The main goal of these lattice simulations is to moti-
vate the construction of time-dependent EOS parameter
to describe the epoch of reheating. In the following sub-
section, we shall discuss time-dependent EOS parameters
which effectively capture the results we have obtained
from the end of the coherent oscillation phase until the
beginning of the epoch of radiation domination.

B. Parametrizing the EOS

Motivated by the results from the lattice simulations, in
order to capture the continuous variation of the EOS pa-
rameter from the end of coherent oscillations to radiation
domination, we shall now parametrize the instantaneous
EOS parameter by hand in terms of e-folds. In choosing
the functional form of the EOS parameter, we assume
that it varies monotonically from its initial value wco

to the final value of 1/3. We find that this condition
considerably restricts the form of the functions we can
consider.

We consider two different parametrizations of the fol-
lowing forms:

• Case A: exponential form

w(N) = w0 + w1 exp

(

− 1

∆

N

Nre

)

, (18)

• Case B: tan-hyperbolic form

w(N) = w0 + w1 tanh

(

1

∆

N

Nre

)

, (19)

where N is the number of e-folds counted from the end of

the phase of coherent oscillations. We must clarify here
that although, we have used the same symbols w0, w1

and ∆ in the two parametrizations, a priori, we do not
expect that two sets of parameters are related or that the
functional dependence of w(N) on them are similar. The
parameters w0 and w1 are fixed from the values of w at
the end of the coherent oscillations and the asymptotic
limit which we take to be that of the radiation dominated
epoch. Evidently, the parameter ∆ controls the efficiency
of the reheating process and determines how quickly the
radiation dominated phase is attained. We further assume
that the EOS parameter at the end of reheating, say, wre,
is within 10% of the asymptotic value of 1/3. There
are two reasons for this assumption. The first is the
reason that one has to account for various physical effects
that can result in the deviation of the EOS parameter
from 1/3 during the initial stages of radiation domination
(see Ref. [55]; in this context, also see Ref. [56], Sec. 2.11).
The second is the practical reason to set a benchmark
where the energy density of radiation has formally begun
to dominate the rest of the energy densities. We find
that this choice of wre fixes the value of ∆. Under these
conditions, the two parametrizations take the following
form:

w(N, p) =







1
3 + 2

3

(

p−4
p+2

)

exp
(

− 1
∆

N
Nre

)

, (A)

p−2
p+2 − 2

3

(

p−4
p+2

)

tanh
(

1
∆

N
Nre

)

, (B)
(20)

with

1

∆
=







ln
[(

p−4
p+2

) (

2
3wre−1

)]

, (A)

tanh−1
{

3
2

[

p−2−wre(p+2)
p−4

]}

. (B)
(21)

We had already pointed out that, from its initial value
of wco = (p− 2)/(p+ 2), the EoS parameter w increases
or decreases monotonically towards 1/3 for p < 4 and
p > 4, respectively. For p = 4, the reheating phase is
indistinguishable from the radiation dominated epoch
since wco = 1/3. Hence, in such a case, ∆ → 0. In Fig. 5,
we have compared the two parametrizations described by
Eq. (20) for different values of p. Note that the behavior
of two parametrizations are qualitatively similar and,
importantly, they broadly mimic the behavior we had seen
in the results from lattice simulations we had discussed
in the previous subsection.
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FIG. 5. The time-dependent EOS parameter w(N) during
reheating has been plotted as a function of e-folds when the
inflaton evolves in potentials which behave as V (φ) ∝ φp near
their minima. We have plotted both the exponential (as solid
lines) and the tan-hyperbolic (as dashed lines) parametriza-
tions that we have proposed [cf. Eq. (20)] for a few different
values of p. As a benchmark, we take the end of reheating (de-
noted by the red vertical line) to be when the EOS parameter
reaches within 10% of its asymptotic value of 1/3.

p wco wexp

eff wtanh
eff

1 −1/3 0.12 0.09

2 0 0.20 0.19

4 1/3 1/3 1/3

6 1/2 0.41 0.42

8 3/5 0.44 0.45

p → ∞ 1 0.53 0.56

TABLE I. Comparison between the EOS parameter during
coherent oscillations wco and the effective EOS parameter weff

during reheating for the two parametrizations that we have
proposed. Clearly, weff is largely independent of the two
parametrizations we have considered. Also, note that, in
general, weff proves to be substantially different from wco.

Given the forms (20) for the time varying EOS parame-
ter, we can determine the corresponding weff [cf. Eq. (6)]
for the two cases A and B to be

weff(p) =







1
3 − 2∆

3

(

p−4
p+2

)

(

e−1/∆ − 1
)

, (A)
(

p−2
p+2

)

− 2∆
3

(

p−4
p+2

)

log [cosh (1/∆)] . (B)

(22)
Thus, for a given inflationary potential, weff is fixed. In
Tab. I, we have compared the values of weff for the two
parametrizations with the value of wco for a set of values
of p. On substituting Eq. (22) for weff in Eq. (10) for Nre,
we obtain that

Nre =







2
(

p+2
p−4

)

N
[

∆
(

1− e−1/∆
)]−1

, (A)

2
(

p+2
p−4

)

N {1−∆ log [cosh (1/∆)]}−1
, (B)

(23)

where the quantity N is defined as

N = Nk +
(4− p)

2 (p+ 2)
Nco + ln

(

k

a0 T0

)

+
1

4
ln

(

30

π2 gre

)

+
1

3
ln

(

11 gs,re
43

)

− ln

(

Hk

ρ
1/4
end

)

, (24)

while ∆ is given by Eq. (21). It should be clear from
the above equation that, barring gre, gs,re and Nco, the
duration of reheating Nre depends only on the inflationary
parameters and the CMB observables. On substituting
the above expressions for weff and Nre in Eq. (9), we can
arrive at the corresponding reheating temperature Tre.

IV. APPLICATION TO AN INFLATIONARY

MODEL

Let us now apply our arguments to an inflationary
model which has the desired behavior near its minima. To-
wards this end, we shall consider the so-called α-attractor
model described by potential [57, 58]

V (φ) = Λ4

[

1− exp

(

−
√

2

3α

φ

M
Pl

)]p

, (25)

where Λ, α and p are, evidently, parameters that character-
ize the model. As we had pointed out, we can express the
first slow roll parameter as ǫ ≃ (M2

Pl
/2) (Vφ/V )2, where

the subscript φ denotes the derivative of the potential
with respect to the field. Let us define the second slow
roll parameter as η ≃ M2

Pl
(Vφφ/V ). Then, in the slow

roll approximation, the inflationary observables—viz. the
scalar spectral index n

S
and the tensor-to-scalar ratio r—

can be expressed in terms of these parameters as (see, for
instance, the reviews [59–67])

n
S
= 1− 6 ǫk + 2 ηk, (26a)

r = 16 ǫk, (26b)

where the subscript k indicates that these quantities have
to be evaluated when the mode leaves the Hubble radius.
Moreover, the scalar amplitude A

S
can be expressed in

terms of the value of the Hubble parameter Hk and the
tensor-to-scalar ratio r as follows:

Hk =

√

r As
2

πM
Pl
. (27)

The number of e-folds Nk between the mode k leav-
ing the Hubble radius and the end of inflation can be
expressed in the slow roll approximation as

Nk =

∫ φend

φk

dφ
H

φ̇
≃ 1

M2
Pl

∫ φk

φend

dφ
V

Vφ
. (28)
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For the inflationary potential (25) of our interest, Nk can
be evaluated to be

Nk =
3α

2 p

[

exp

(

√

2

3α

φk
M

Pl

)

− exp

(

√

2

3α

φend
M

Pl

)

−
√

2

3α

(φk − φend)

M
Pl

]

. (29)

The quantity φend can be determined by the condition
ǫ = 1 and is given by

φend
M

Pl

=

√

3α

2
ln

(

1 +
p√
3α

)

(30)

so that we have

Vend = V (φend) = Λ4

(

p

p+
√
3α

)

. (31)

The above relations between φk, φend and Nk and
Eq. (26a) for the scalar spectral index allows us to write
n

S
in terms of Nk. We can then invert the relation to

express Nk in terms of n
S
.

Note that, near its minimum, the inflationary poten-
tial (25) can be approximated as

V (φ) ≃ Λ4

(

2φ

3αM
Pl

)p

, (32)

which is of the form we desire. We should mention here
that, for α = 1 and p = 2, the potential (25) corresponds
to the Starobinsky model, which is the most favored model
according to the recent CMB observations [39, 40]. Recall
that, for a given p, weff is fixed [cf. Eq. (22)]. Hence,
we have most of the required ingredients to calculate the
duration of reheating Nre and the corresponding reheat-
ing temperature Tre using the expressions (23) and (9).
However, we shall require values for gre, gs,re and Nco. It
seems reasonable to choose gre = gs,re = 102 [27].

Let us now turn to identifying a suitable choice for Nco.
The duration of the phase of coherent oscillation can
strongly depend on the model parameters and, impor-
tantly, on the couplings of the inflaton to other fields [33].
In particular, if nonperturbative processes dominate
throughout the reheating phase, thermalization may be
achieved within a few
e-folds making it difficult to connect the reheating phase
with the CMB observables. However, this phase can
be inefficient or delayed [68–70] and can result in the
breakdown of coherent oscillations without thermaliza-
tion [71, 72]. It has been pointed out that the final stage
of reheating must involve the perturbative decay of the
inflaton and the thermalization is slow if we, for example,
invoke certain supersymmetric extensions of the standard
model to achieve inflation [73]. Although preheating can
generate a plasma of inflaton and other daughter fields
in kinetic equilibrium, complete thermal equilibrium is
achieved over a much larger time scale than that of the

preheating [30, 74]. The exact number for Nco will de-
pend on the inflationary potential as well as the type of
interaction(s) and the strength of the coupling parame-
ter(s). However, if there are no daughter fields present
and inflaton fragments only due to self-resonance, one can
arrive at an estimate for the upper bound on its value,
which is found to be (see Refs. [35, 36])

Nco ≃ (p+ 2)

6
ln Rco, (33)

where Rco ∼ O(102) depends on the resonance structure.
On assuming Rco to be 102, we get Nco = (3.07, 4.60, 6.14)
for p = (2, 4, 6). If coupling to other fields are present, the
value of Nco will naturally decrease [33]. Therefore, the
period of preheating is negligible compared to the entire
duration of reheating. Due to these reasons, we consider
Nco to be small and set it to unity.

With all these necessary ingredients at hand, let us now
compute the reheating temperature Tre for the model of
our interest. Note that, Tre depends on n

S
, p, α, and weff .

We shall set α = 1 without any loss of generality. Since
weff is largely independent of the two parametrizations
[cf. Tab. I], we shall choose to work with the values
corresponding to the exponential form for w(N). In Fig. 6,
we have highlighted the dependence of Tre on n

S
and p

in two different manner. We have first plotted Tre as a
function of p for the value of n

S
that leads to the best

fit to the recent CMB data [39, 40]. In the figure, we
have also illustrated the simultaneous dependence of Tre
on n

S
and p. Note that the lower bound on the reheating

temperature is arrived at from the BBN constraints as
TBBN ∼ 10MeV (see Refs. [13–15]; for a recent discussion,
see Ref. [75]), whereas the upper limit comes from the
condition of instantaneous reheating which corresponds
to the inflationary energy scale of the order of the grand
unified theory (GUT) scale of about 1016 GeV that arises
in certain supersymmetric theories.

Let us emphasize a few more points concerning Fig. 6.
It is clear that the new effective EOS parameter we have
arrived at lowers the reheating temperature. This effect
can be attributed to the dependence of Tre on the ratio
(1+weff)/(3weff −1), which is always higher than the one
computed with weff = wco = (p− 2)/(p+ 2) for a given
value of p. Thus, our proposal for the time-dependent
EOS and its effect can, in principle, be tested in future
experiments [76, 77]. Moreover, note that, the variation of
Tre with p also depends on the value of the scalar spectral
index. It is evident from Fig. 6 that, for p < 4, an increase
in the value of n

S
results in a larger value of Tre. This is

due to the fact that for p < 4, weff < 1/3 and, hence, an
increase in the value of n

S
leads to a smaller value of Nre

which, in turn, leads to a larger value of Tre. However,
for p > 4, the conditions are reversed and we have a
decreasing Tre for an increasing n

S
.
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FIG. 6. The dependence of the reheating temperature Tre on the index p has been illustrated (on the left) for n
S
= 0.9649

which leads to the best-fit to the CMB data [39, 40]. We have plotted the dependence of Tre on p for weff corresponding to the
exponential parametrization [cf. Eqs. (20) and (22)] (as the solid blue curve) as well as for the choice weff = wco = (p−2)/(p+2)
(as the dashed orange curve). We have also indicated the following domains (in the figure on the left): the region above maximum

possible reheating temperature of Tinst =
[

30 ρend/(gre π
2)
]1/4

corresponding instantaneous reheating or Nre = 0 (in red), the
domains below the electroweak scale taken to be T

EW
∼ 100GeV (in lighter blue) and the region below 10MeV which is the

minimum temperature required for BBN (in darker blue). Moreover, we have illustrated the dependence of Tre on n
S
and p (on

the right) for the choice of weff corresponding to the exponential parametrization. Note that we have set α = 1 in both these
plots.

V. DISCUSSION

In this work, we have computed the effective EOS pa-
rameter during the reheating phase of the Universe by
taking into account the time evolution of the instanta-
neous EOS parameter. We have shown that the gradient
and interaction energy densities force the instantaneous
EOS parameter to deviate from its value during the phase
of coherent oscillations which succeeds inflation. Assum-
ing that the inflationary potential behaves as V (φ) ∝ φp

about its minimum, based on results from lattice simula-
tions, we have argued that, during reheating, w increases
monotonically and approaches 1/3 for p < 4, whereas,
for p > 4, it decreases monotonically to 1/3 (cf. Fig. 4).
In order to capture such a behavior, we have proposed
two different functional forms of the time varying EOS
parameter during reheating (cf. Fig. 5). We find that
the resulting value of weff depends only on the inflation-
ary model parameter p and is largely independent of
the parametrizations we have considered for w(N) (cf.
Tab. I).

Let us stress here a few further points concerning the
results we have obtained. Note that, in our approach, weff

is completely determined by the inflationary parameter p.
Therefore, for a specific p, the reheating temperature Tre
is fixed for a given value of the scalar spectral index n

S
.

This should be contrasted with earlier studies, wherein
there is an arbitrariness in choosing the value of weff . As
we discussed earlier, often weff is either assumed to lie in
the range −1/3 ≤ weff ≤ 1 or simply taken to be same as
that of wco. However, various (p)reheating studies have

indicated towards time varying EOS, which has been
captured efficiently with our parametrization. With such
a time varying EOS parameter, we can uniquely define
weff which, as we highlighted, is fixed by the behavior
of the field around the minimum of the potential. It is
worth stressing again that the weff we have arrived at is
largely independent of parametrization. Thus, this study
mitigates the arbitrariness in defining the effective EOS
parameter during reheating for a given inflationary model.

Lastly, note that, though we have worked with the α-
attractor model of inflation specified by the potential (25),
our analysis applies to all the inflationary models which
behave as φp around their minima. With ongoing and
forthcoming CMB missions expected to constrain the
inflationary parameters more accurately, we believe that
our proposal for the time-dependent EOS during reheating
can be well tested in the near future.
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Appendix A: Behavior of the EOS parameter during

preheating

In order to highlight the behavior of the EOS parameter
during the epoch of coherent oscillations that immediately
follows inflation, in this Appendix, we shall briefly discuss
the well known case of perturbative reheating in the
popular quadratic inflationary potential (in this context,
see also Refs. [25, 27, 28]). Incidentally, the perturbative
mechanism we shall discuss here is the original idea of
reheating, as we had mentioned in the introduction [16].
In this case, to transfer the energy from the inflaton
to radiation, an additional damping term is introduced
by hand in the equation governing the inflaton in the
following fashion:

φ̈+ 3H φ̇+ Γφ φ̇+ Vφ = 0, (A1)

Physically, the damping term is expected to arise due
to quantum particle creation as the inflaton decays into
other lighter species that are coupled to it. For instance,
if φ is allowed to decay into fermionic channels via an
Yukawa interaction of the form Lint ⊃ g φ ψ̄ ψ, then, using
the methods of perturbative quantum field theory, one
can show that [78]

Γφ ≡ Γφ→ψ̄ ψ =
g2mφ

8π
, (A2)

where mφ is the tree-level mass of the inflaton. Since we
require a radiation dominated Universe after reheating,
for simplicity, it is often assumed that the inflaton directly
transfers it’s energy to radiation. In order to conserve the
total energy of the systems involved, as a consequence of
the additional decay term in the equation of motion (A1)
of the inflaton, the equation describing the conservation
of energy density ργ of radiation is modified to be

ρ̇γ + 4H ργ − Γφ φ̇
2 = 0, (A3)

while the Hubble parameterH is governed by the following
Friedmann equation:

H2 =
1

3M2
Pl

(

φ̇2

2
+ V (φ) + ργ

)

. (A4)

The system of Eqs A1) and (A3) can be readily solved
with the initial conditions on the inflaton imposed at end
of inflation and the initial radiation density assumed to be
zero. The exact EOS parameter for the system is defined
as

w =
1
2 φ̇

2 − V (φ) + 1
3ργ

1
2 φ̇

2 + V (φ) + ργ
. (A5)

We have plotted the EOS parameter during preheating
for the case of the quadratic potential in Fig. 7. It is clear
that the additional coupling introduced by hand transfers
the energy from the inflation to radiation fairly effectively,
in fact within a matter of a few e-folds.

62 64 66 68
N

−1.0

−0.5

0.0

0.5

1.0

w
(N

)

FIG. 7. The behavior of the instantaneous EOS parameter
(in black) as well as the corresponding quantity arrived at
after averaging over the oscillations (in orange) have been
plotted for the case of the popular quadratic inflationary
potential. We have set the value of the decay width to be
Γφ = 2× 10−9 M

Pl
in arriving at these plots. Note that the

averaged EOS parameter starts at w = 0 (indicated by the
blue horizontal line) and eventually approaches 1/3 (indicated
by the green horizontal line) suggesting the eventual transfer
of energy from the inflation to radiation.



11

[1] A. H. Guth, The Inflationary Universe: A Possible
Solution to the Horizon and Flatness Problems, Phys.
Rev. D23, 347 (1981), [Adv. Ser. Astrophys. Cos-
mol.3,139(1987)].

[2] A. A. Starobinsky, A New Type of Isotropic Cosmological
Models Without Singularity, Phys. Lett. 91B, 99 (1980),
[Adv. Ser. Astrophys. Cosmol.3,130(1987)].

[3] A. D. Linde, A New Inflationary Universe Scenario:
A Possible Solution of the Horizon, Flatness, Homo-
geneity, Isotropy and Primordial Monopole Problems, ,
Phys. Lett. 108B, 389 (1982), [Adv. Ser. Astrophys. Cos-
mol.3,149(1987)].

[4] C. L. Bennett et al. (WMAP), First year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) observations: Prelim-
inary maps and basic results, Astrophys. J. Suppl. 148, 1
(2003), arXiv:astro-ph/0302207 [astro-ph].

[5] H. V. Peiris et al. (WMAP), First year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) observations: Impli-
cations for inflation, Astrophys. J. Suppl. 148, 213 (2003),
arXiv:astro-ph/0302225 [astro-ph].

[6] P. A. R. Ade et al. (Planck), Planck 2013 results. XVI.
Cosmological parameters, Astron. Astrophys. 571, A16
(2014), arXiv:1303.5076 [astro-ph.CO].

[7] P. A. R. Ade et al. (BICEP2, and Planck Collaborations),
Joint Analysis of BICEP2/KeckArray and Planck Data,
Phys. Rev. Lett. 114, 101301 (2015), arXiv:1502.00612
[astro-ph.CO].

[8] S. W. Hawking, The Development of Irregularities in a
Single Bubble Inflationary Universe, Phys. Lett. 115B,
295 (1982).

[9] A. H. Guth and S. Y. Pi, Fluctuations in the New Infla-
tionary Universe, Phys. Rev. Lett. 49, 1110 (1982).

[10] A. A. Starobinsky, Dynamics of Phase Transition in the
New Inflationary Universe Scenario and Generation of
Perturbations, Phys. Lett. 117B, 175 (1982).

[11] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner,
Spontaneous Creation of Almost Scale - Free Density Per-
turbations in an Inflationary Universe, Phys. Rev. D28,
679 (1983).

[12] D. H. Lyth and A. Riotto, Particle physics models of
inflation and the cosmological density perturbation, Phys.
Rept. 314, 1 (1999), arXiv:hep-ph/9807278 [hep-ph].

[13] M. Kawasaki, K. Kohri, and N. Sugiyama, Cosmological
constraints on late time entropy production, Phys. Rev.
Lett. 82, 4168 (1999), arXiv:astro-ph/9811437 [astro-ph].

[14] G. Steigman, Primordial Nucleosynthesis in the Precision
Cosmology Era, Annu. Rev. Nucl. Part. Sci. 57, 463 (2007),
arXiv:0712.1100 [astro-ph].

[15] B. D. Fields, P. Molaro, and S. Sarkar, Big-Bang Nucle-
osynthesis, Chin. Phys. C38, 339 (2014), arXiv:1412.1408
[astro-ph.CO].

[16] A. Albrecht, P. J. Steinhardt, M. S. Turner, and
F. Wilczek, Reheating an Inflationary Universe, Phys.
Rev. Lett. 48, 1437 (1982).

[17] L. F. Abbott, E. Farhi, and M. B. Wise, Particle Pro-
duction in the New Inflationary Cosmology, Phys. Lett.
117B, 29 (1982).

[18] A. D. Dolgov and A. D. Linde, Baryon Asymmetry in
Inflationary Universe, Phys. Lett. 116B, 329 (1982).

[19] J. H. Traschen and R. H. Brandenberger, Particle Produc-
tion During Out-of-equilibrium Phase Transitions, Phys.

Rev. D42, 2491 (1990).
[20] L. Kofman, A. D. Linde, and A. A. Starobinsky, Re-

heating after inflation, Phys. Rev. Lett. 73, 3195 (1994),
arXiv:hep-th/9405187 [hep-th].

[21] Y. Shtanov, J. H. Traschen, and R. H. Brandenberger,
Universe reheating after inflation, Phys. Rev. D51, 5438
(1995), arXiv:hep-ph/9407247 [hep-ph].

[22] D. T. Son, Reheating and thermalization in a simple
scalar model, Phys. Rev. D54, 3745 (1996), arXiv:hep-
ph/9604340 [hep-ph].

[23] L. Kofman, A. D. Linde, and A. A. Starobinsky, Towards
the theory of reheating after inflation, Phys. Rev. D56,
3258 (1997), arXiv:hep-ph/9704452 [hep-ph].

[24] D. Boyanovsky, M. D’Attanasio, H. J. de Vega, R. Holman,
D. S. Lee, and A. Singh, Reheating the postinflationary
universe, (1995), arXiv:hep-ph/9505220 [hep-ph].

[25] J. Martin and C. Ringeval, First CMB Constraints on
the Inflationary Reheating Temperature, Phys. Rev. D82,
023511 (2010), arXiv:1004.5525 [astro-ph.CO].

[26] M. S. Turner, Coherent Scalar Field Oscillations in an
Expanding Universe, Phys. Rev. D28, 1243 (1983).

[27] V. Mukhanov, Physical Foundations of Cosmology (Cam-
bridge University Press, Oxford, 2005).

[28] D. I. Podolsky, G. N. Felder, L. Kofman, and M. Peloso,
Equation of state and beginning of thermalization after
preheating, Phys. Rev. D 73, 023501 (2006), arXiv:hep-
ph/0507096.

[29] R. Micha and I. I. Tkachev, Relativistic turbulence: A
Long way from preheating to equilibrium, Phys. Rev. Lett.
90, 121301 (2003), arXiv:hep-ph/0210202 [hep-ph].

[30] R. Micha and I. I. Tkachev, Turbulent thermalization,
Phys. Rev. D70, 043538 (2004), arXiv:hep-ph/0403101
[hep-ph].

[31] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine, and
A. Mazumdar, Reheating in Inflationary Cosmology: The-
ory and Applications, Ann. Rev. Nucl. Part. Sci. 60, 27
(2010), arXiv:1001.2600 [hep-th].

[32] M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and
J. Karouby, Nonperturbative Dynamics Of Reheating Af-
ter Inflation: A Review, Int. J. Mod. Phys. D24, 1530003
(2014), arXiv:1410.3808 [hep-ph].

[33] D. G. Figueroa and F. Torrenti, Parametric resonance in
the early Universe—a fitting analysis, JCAP 1702, 001
(2017), arXiv:1609.05197 [astro-ph.CO].

[34] D. Maity and P. Saha, (P)reheating after minimal Plateau
Inflation and constraints from CMB, JCAP 1907, 018
(2019), arXiv:1811.11173 [astro-ph.CO].

[35] K. D. Lozanov and M. A. Amin, Equation of State and
Duration to Radiation Domination after Inflation, Phys.
Rev. Lett. 119, 061301 (2017), arXiv:1608.01213 [astro-
ph.CO].

[36] K. D. Lozanov and M. A. Amin, Self-resonance after
inflation: oscillons, transients and radiation domination,
Phys. Rev. D97, 023533 (2018), arXiv:1710.06851 [astro-
ph.CO].

[37] J. B. Munoz and M. Kamionkowski, Equation-of-State
Parameter for Reheating, Phys. Rev. D91, 043521 (2015),
arXiv:1412.0656 [astro-ph.CO].

[38] E. Komatsu et al. (WMAP), Seven-year Wilkinson
Microwave Anisotropy Probe Observations: Cosmolog-
ical Interpretation, Astrophys.J.Suppl. 192, 18 (2011),



12

arXiv:1001.4538 [astro-ph.CO].
[39] P. A. R. Ade et al. (Planck), Planck 2015 results. XX.

Constraints on inflation, Astron. Astrophys. 594, A20
(2016), arXiv:1502.02114 [astro-ph.CO].

[40] Y. Akrami et al. (Planck), Planck 2018 results. X. Con-
straints on inflation, (2018), arXiv:1807.06211 [astro-
ph.CO].

[41] J. Martin, C. Ringeval, and V. Vennin, Observing Infla-
tionary Reheating, Phys. Rev. Lett. 114, 081303 (2015),
arXiv:1410.7958 [astro-ph.CO].

[42] L. Dai, M. Kamionkowski, and J. Wang, Reheating con-
straints to inflationary models, Phys. Rev. Lett. 113,
041302 (2014), arXiv:1404.6704 [astro-ph.CO].

[43] J. L. Cook, E. Dimastrogiovanni, D. A. Easson, and L. M.
Krauss, Reheating predictions in single field inflation,
JCAP 1504, 047 (2015), arXiv:1502.04673 [astro-ph.CO].

[44] M. Drewes, J. U. Kang, and U. R. Mun, CMB con-
straints on the inflaton couplings and reheating tem-
perature in α-attractor inflation, JHEP 11, 072 (2017),
arXiv:1708.01197 [astro-ph.CO].

[45] J.-O. Gong, S. Pi, and G. Leung, Probing reheat-
ing with primordial spectrum, JCAP 1505, 027 (2015),
arXiv:1501.03604 [hep-ph].

[46] D. Maity and P. Saha, Connecting CMB anisotropy and
cold dark matter phenomenology via reheating, Phys. Rev.
D98, 103525 (2018), arXiv:1801.03059 [hep-ph].

[47] D. Maity and P. Saha, CMB constraints on dark matter
phenomenology via reheating in Minimal plateau inflation,
Phys. Dark Univ. 25, 100317 (2019), arXiv:1804.10115
[hep-ph].

[48] R. Allahverdi, K. Dutta, and A. Maharana, Constraining
Non-thermal Dark Matter by CMB, JCAP 10, 038 (2018),
arXiv:1808.02659 [astro-ph.CO].

[49] D. Maity and P. Saha, Minimal plateau inflationary cos-
mologies and constraints from reheating, Class. Quant.
Grav. 36, 045010 (2019), arXiv:1902.01895 [gr-qc].

[50] A. Di Marco, G. De Gasperis, G. Pradisi, and P. Cabella,
Energy Density, Temperature and Entropy Dynamics in
Perturbative Reheating, Phys. Rev. D100, 123532 (2019),
arXiv:1907.06084 [astro-ph.CO].

[51] R. Kallosh and A. Linde, Universality Class in Conformal
Inflation, arXiv:1306.5220 [hep-th].

[52] G. N. Felder and I. Tkachev, LATTICEEASY: A Program
for lattice simulations of scalar fields in an expanding
universe, arXiv:hep-ph/0011159.

[53] G. N. Felder, CLUSTEREASY: A program for lattice
simulations of scalar fields in an expanding universe on
parallel computing clusters, Comput. Phys. Commun. 179,
604 (2008), arXiv:0712.0813 [hep-ph].

[54] S. Antusch, D. G. Figueroa, K. Marschall, and F. Torrenti,
Energy distribution and equation of state of the early
Universe: matching the end of inflation and the onset of
radiation domination, (2020), arXiv:2005.07563 [astro-
ph.CO].

[55] N. Seto and J. Yokoyama, Probing the equation of state
of the early universe with a space laser interferometer,
J. Phys. Soc. Jap. 72, 3082 (2003), arXiv:gr-qc/0305096
[gr-qc].

[56] S. Weinberg, Gravitation and Cosmology (John Wiley and
Sons, New York, 1972).

[57] J. J. M. Carrasco, R. Kallosh, and A. Linde, α-Attractors:
Planck, LHC and Dark Energy, JHEP 10, 147 (2015),
arXiv:1506.01708 [hep-th].

[58] J. J. M. Carrasco, R. Kallosh, and A. Linde, Cosmological
Attractors and Initial Conditions for Inflation, Phys. Rev.
D92, 063519 (2015), arXiv:1506.00936 [hep-th].

[59] V. F. Mukhanov, H. A. Feldman, and R. H. Branden-
berger, Theory of cosmological perturbations. Part 1. Clas-
sical perturbations. Part 2. Quantum theory of perturba-
tions. Part 3. Extensions, Phys. Rept. 215, 203 (1992).

[60] J. Martin, Inflation and precision cosmology, Particles
and fields. Proceedings, 24th National Meeting, ENFPC
24, Caxambu, Brazil, September 30-October 4, 2003, Braz.
J. Phys. 34, 1307 (2004), arXiv:astro-ph/0312492 [astro-
ph].

[61] J. Martin, Inflationary cosmological perturbations of
quantum-mechanical origin, Planck scale effects in as-
trophysics and cosmology. Proceedings, 40th Karpacs Win-
ter School, Ladek Zdroj, Poland, February 4-14, 2004,
Lect. Notes Phys. 669, 199 (2005), arXiv:hep-th/0406011
[hep-th].

[62] B. A. Bassett, S. Tsujikawa, and D. Wands, Inflation
dynamics and reheating, Rev. Mod. Phys. 78, 537 (2006),
arXiv:astro-ph/0507632 [astro-ph].

[63] L. Sriramkumar, An introduction to inflation and cos-
mological perturbation theory, Curr. Sci. 97, 868 (2009),
arXiv:0904.4584 [astro-ph.CO].

[64] L. Sriramkumar, in Vignettes in Gravitation and Cosmol-
ogy , edited by L. Sriramkumar and T. Seshadri (World
Scientific, Singapore, 2012) pp. 207–249.

[65] D. Baumann, in Physics of the Large and the Small, TASI
09, Proceedings of the Theoretical Advanced Study Institute
in Elementary Particle Physics, Boulder, Colorado, USA,
1-26 June 2009 (2011) pp. 523–686, arXiv:0907.5424 [hep-
th].

[66] A. Linde, in Proceedings, 100th Les Houches Sum-
mer School: Post-Planck Cosmology: Les Houches,
France, July 8 - August 2, 2013 (2015) pp. 231–316,
arXiv:1402.0526 [hep-th].

[67] J. Martin, The Observational Status of Cosmic Inflation
after Planck, The Cosmic Microwave Background, Astro-
phys. Space Sci. Proc. 45, 41 (2016), arXiv:1502.05733
[astro-ph.CO].

[68] J. Garcia-Bellido, D. G. Figueroa, and J. Rubio, Pre-
heating in the Standard Model with the Higgs-Inflaton
coupled to gravity, Phys. Rev. D79, 063531 (2009),
arXiv:0812.4624 [hep-ph].

[69] J. Repond and J. Rubio, Combined Preheating on the
lattice with applications to Higgs inflation, JCAP 1607,
043 (2016), arXiv:1604.08238 [astro-ph.CO].

[70] K. Freese, E. I. Sfakianakis, P. Stengel, and L. Visinelli,
The Higgs Boson can delay Reheating after Inflation,
JCAP 1805, 067 (2018), arXiv:1712.03791 [hep-ph].

[71] R. Easther, R. Flauger, and J. B. Gilmore, Delayed
Reheating and the Breakdown of Coherent Oscillations,
JCAP 1104, 027 (2011), arXiv:1003.3011 [astro-ph.CO].

[72] N. Musoke, S. Hotchkiss, and R. Easther, Lighting the
Dark: Evolution of the Postinflationary Universe, Phys.
Rev. Lett. 124, 061301 (2020), arXiv:1909.11678 [astro-
ph.CO].

[73] R. Allahverdi and A. Mazumdar, Supersymmetric ther-
malization and quasi-thermal universe: Consequences
for gravitinos and leptogenesis, JCAP 10, 008 (2006),
arXiv:hep-ph/0512227.

[74] G. N. Felder and L. Kofman, The Development of equilib-
rium after preheating, Phys. Rev. D 63, 103503 (2001),



13

arXiv:hep-ph/0011160.
[75] T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen,

T. Tram, and S. Hannestad, MeV-scale reheating tem-
perature and thermalization of oscillating neutrinos by
radiative and hadronic decays of massive particles, JCAP
1912, 012 (2019), arXiv:1908.10189 [hep-ph].

[76] F. Finelli et al. (CORE), Exploring cosmic ori-
gins with CORE: Inflation, JCAP 1804, 016 (2018),

arXiv:1612.08270 [astro-ph.CO].
[77] S. Kuroyanagi, K. Nakayama, and J. Yokoyama,

Prospects of determination of reheating temperature af-
ter inflation by DECIGO, PTEP 2015, 013E02 (2015),
arXiv:1410.6618 [astro-ph.CO].

[78] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, 2014).


	Accounting for the time evolution of the equation of state parameter during reheating
	Abstract
	I Introduction
	II Connecting the reheating phase with the CMB observables
	III Time-dependent EOS
	A Specific examples of the time-dependent EOS
	B Parametrizing the EOS

	IV Application to an inflationary model
	V Discussion
	 Acknowledgements
	A Behavior of the EOS parameter during preheating
	 References


