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Abstract

Inlet distortion often occurs under off-design conditions when a flow separates within an intake

and this unsteady phenomenon can seriously impact fan performance. Fan-distortion interac-

∗Address all issues to this author.
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tion is a highly unsteady aerodynamic process into which high-fidelity simulations can provide

detailed insights. However, due to limitations on the computational resource, the use of an

eddy resolving method for a fully resolved fan calculation is currently infeasible within industry.

To solve this problem, a mixed-fidelity CFD method is proposed. This method uses the Large

Eddy Simulation (LES) approach to resolve the turbulence associated with separation, and the

Immersed Boundary Method with Smeared Geometry (IBMSG) to model the fan. The method

is validated by providing comparisons against the experiment on the Darmstadt Rotor, which

shows a good agreement in terms of total pressure distributions.

A detailed investigation is then conducted for a subsonic rotor with an annular beam-

generating inlet distortion. A number of studies are performed in order to investigate the fans

influence on the distortions. A comparison to the case without a fan shows that the fan has a

significant effect in reducing distortions. Three fan locations are examined which reveal that

the fan nearer to the inlet tends to have a higher pressure recovery. Three beams with different

heights are also tested to generate various degrees of distortion. The results indicate that the

fan can suppress the distortions and that the recovery effect is proportional to the degree of

inlet distortion.
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1 Introduction

Inlet distortion often occurs at off-design points when flows separate within an intake. This

unsteady phenomenon can seriously impact fan performance. The current trend of engine

design is to make the intakes shorter and as a consequence, an increased interaction be-

tween the inlet distortions and a downstream fan may further deteriorate the performance.

The fan-distortion interaction is a highly unsteady aerodynamic phenomenon that needs to

be investigated using high-fidelity methods. This is because conventional steady or unsteady

Reynolds-averaged Navier-Stokes (RANS) modelling cannot resolve turbulence, although it is

sometimes feasible for applications in industry [1]. Due to the limitations of turbulence models,

results may vary significantly with different RANS models [2–5] when predicting highly sepa-

rated flows. Eddy resolving simulation techniques such as DNS/LES and hybrid LES/RANS

have been shown to yield more promising results [6–8]. However, the cost of such simulations

can be tremendous (Gourdain [9]).

To enable such simulations however, a high-fidelity method can be jointly used with low-

fidelity methods, an approach known as ‘mixed fidelity modelling’. For example, when simulat-

ing the separated flow of an intake, one may use a lower-order model for the blades instead

of resolving the blades as a ‘boundary condition’ for the separation region. This is feasible be-

cause pursuing computational accuracy does not necessarily correspond to a higher fidelity.

As long as the calibrated low-order model is capable of achieving this target within an accept-

able tolerance, it can in fact partially replace higher-fidelity methods. According to a recent

report by NASA [10], “coupled problems, such as separation, transition, hear transfer, aeroa-

coustics, aeroelastics, etc., desire a physics-based, predictive modelling approach that must

capture the underlying physics more accurately than ever before”. Hence, for these coupled

problems, mixed-fidelity modelling could achieve the target at a lower cost.

The low-fidelity method we mention here essentially concerns geometrical modelling, which

also has various types, as shown in Figure 1. The lowest level, the Immersed Boundary

Method with Smeared Geometry (IBMSG) approach, also known as the blade body force ap-

proach, assumes that the number of blades is infinite, and that the flow is circumferentially

averaged. The inviscid IBMSG, firstly proposed by Marble [11] simply uses the force normal
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to the blade surfaces to model the flow turning effects. Viscous body force models were intro-

duced by Xu [12] who used such models for unsteady flow calculations and for the investigation

of distortion problems. This model assumes a number of force-velocity relations to model loss

effects. In the middle of this hierarchy, the Immersed Boundary Method is used for real geome-

tries. This model was proposed by Peskin [13] and was applied by Fadlun [14] for some simple

geometrical calculations. Defoe [15] used this method to model individual rotor blades in order

to predict the intake noise with inlet distortion. The present research is aimed at providing

a mixed-fidelity CFD method using the IBM for the inlet distortion generator and the IBMSG

approach for the rotational fan. With such methods, the emphasis will be on the influence of

the fan on intake distortion.

To date, much numerical and experimental research [16–18] has been conducted to sim-

ulate intake distortion. Various distortion generators were designed to reproduce similar flow

conditions to those in the laboratory. Among these studies, Wartzek [19] investigated distor-

tion patterns using a transonic compressor stage. In his experiment, both circumferential and

whole spanwise intake distortions were investigated, providing essential results for numeri-

cal validation. Some RANS and URANS simulations were conducted also by Fidalgo [20],

Barthmes et al. [21], etc., although research on intake-fan interaction within a high-fidelity sim-

ulation is rare. Here, we apply the mixed-fidelity method to study some key factors for the

fan-intake interaction. Based on this method, Ma et al. [22] found that a downstream fan can

significantly reduce the separation bubble, and hence the reattachment point can be much ear-

lier. The mechanism revealed in their research shows that the fan influences intake separation

mainly via main flow. Hence, the present research is to delve into some key factors, such as

fan location, distortion size, etc., which may affect the reduction of inlet distortion.

The goal of this research is to enable the simulation of unsteady, complex flows whilst main-

taining accuracy. This involves exploring a mixed-fidelity modelling approach that applies the

IBMSG model for the fan and an eddy resolving method for the separated flows. The research

consists of two parts. Firstly, the method is validated on a transonic rotor (Darmstadt Rotor).

The performance map and total pressure distributions are also compared against experimental

results. To investigate how the fan impacts the inlet distortion, different fan locations and de-
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grees of distortion are explored on a Darmstadt-derived rotor. Such a parametric study focuses

on the key factors that can offer insights into the interaction between fan and inlet distortion.

2 Numerical Method

2.1 IBM for the distortion generator

To reduce the cost of high-fidelity modelling without sacrificing accuracy, the Immersed

Boundary Method (IBM) provides a potential means to model the components, such as the

rotor and stator blades in engines. By using this approach, the mesh can be significantly sim-

plified. Essentially, the idea of IBM is to replace boundaries with forces which can be either

a point or body force. This idea was first proposed by Sirovich [23], who applied it to solve

linearised initial and boundary problems. In this work, he regarded the boundary surfaces as

a distribution of sources in the flow which were then directly included in the Navier-Stokes

equations. Consequently, the boundary problems were transformed into standard PDEs with

source terms. This was further demonstrated by Sirovich [24] analytically, such that the trans-

formation was essentially a solution operator acting on the boundary data. Following this

work, Salathé [25] extended this method to the study of compressible hydrodynamics, after

these which, Peskin [13] completed a strict mathematical justification of the Immersed Bound-

ary Method and applied it to the study of fluid-structure interaction. Hence, this method is

applicable to the study of engine components, such as various types of distortion generators.

The force then can be modelled according to Goldstein et al. [26] as,

fff (xxx, t) = α

∫ t

0
∆uuudt +β∆uuu,

∆uuu = uuu(xxx0, t)−uuu0(xxx0, t).

(1)

Here, the subscript 0 represents the solid boundary and the coefficients α and β are neg-

ative constants. This force is evaluated as a function of the difference between the actual

velocity and designed one, which can be also regarded as a proportional-integral (PI) feed-

back controller. Peskin [13] demonstrated that the value of the force is independent of the two

coefficients α and β, once the solution has converged. To ensure convergence, the two coef-
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ficients should be carefully selected. They are associated with two important parameters: the

frequency of the integral part of the feedback forcing:
1

2π

√

|α| and the damping factor of the

proportional part of the feedback forcing: −
β

2
√

|α|
. Hence, α must be large enough to ensure

that the frequency
1

2π

√

|α| is much bigger than any other frequencies in the flow [14]. This

means that the feedback force should change as rapidly as possible and direct the flow in the

desired direction. Also, the time step should be chosen to ensure numerical stability:

∆t <
−β−

√

β2 −2αk

α
, (2)

where the order of k is 1.

2.2 IBMSG for the fan

The fan is modelled using IBM for ‘Smeared Geometries’ (IBMSG) which approach as-

sumes that a rotating fan can be regarded as a set of an infinite number of infinitesimally thin

blades. The forces are circumferentially averaged in every cell in the blade region in order

to turn the flow circumferentially in the desired direction. Cao et al. [27] used this method

to study intake separation under high angle of incidence and demonstrated the capability of

this method in capturing key flow features. The normal force in this model is still controlled

by Equation 1 and the parallel force is modelled by a typical force-velocity relation. This rela-

tion was specifically investigated by Xu [12]. He applied this modelled viscous force to study

three-dimensional unsteady flows with low-order distortion using a viscous body force that

was considered to be proportional to ρuuu2. The coefficient for this proportional relation is con-

stant and can be approximated from fine mesh RANS. It was found that this simple relation

performed well when characterising the unsteady behaviour caused by blade-row interaction.

Compared to eddy resolving methods, the computational time required can be reduced by two

orders of magnitude . Following this work, Cao [28] and Watson [29] further developed a vis-

cous body force modelling technique which worked well in the study of intake distortion. In this
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case, the parallel force is given as,

fff p =−K(r)ρuuu2
rel,K(r) = 4k1s2 + k1, (3)

where s is the fraction of span and the coefficient k1 is a calibration constant set to 0.2 (This

value is obtained by calibrating the characteristic map against the experimental and/or resolved

blade data at the design speed. More details can be found in Reference [29].) The finite blade

thickness introduces blockage to the flow passing through the passage. This effect is modelled

as,

λ = 1−
1

2

(t1 + t2)

S(r)cosβ
, (4)

where S(r) is the surface pitch and t1 + t2 is the total blade thickness (which is based on the

intersection of the normal to the camber line of the blade. Details can be found in [28]). Both

the normal and parallel forces are added to the momentum equations of the compressible

Navier-Stokes equations.

Although the model cannot provide very much detail within the blade region, it is still able to

provide a ‘boundary’ for some target region. This is the core idea of ‘mixed-fidelity modelling’.

For the present research concerning fan-intake interaction, the focus is on the separation do-

main, which will be significantly influenced by both the intake and the downstream rotor. As

long as the modelled components around this domain of focus domain can replicate a number

of important characteristics, this method can be useful for high-fidelity modelling.

2.3 Numerical Framework

Two test cases are used relating to validation and investigation, respectively. The valida-

tion is conducted on a transonic rotor, named the Darmstadt Rotor [16–18]. In these studies,

distortion generators were designed to reproduce the flow conditions in a real engine within

the laboratory. Measurements by Lieser [16] and Bitter [30] show that the compressor perfor-

7 TURBO-18-1136, Cui



mance is most sensitive to the distortions encountered at the tip. Hence, a periodic distortion

generator is placed upstream of the tip of the fan in order to reproduce the distortion encoun-

tered over the intake lip at high angles of attack. The present numerical simulation includes

an IBM-modelled distortion generator, which covers 120◦ in circumferential direction and an

IBMSG-modelled rotor and stator, as shown in Figure 2. The rest of the domain is computed

using RANS. International Standard Metric Conditions (p0 = 101325 Pa and T0 = 288.15 K) are

applied at the inlet flow and the target mass flow rate is 16.0 kg/s . This mass flow rate cor-

responds to the peak efficiency point at 100% rotational speed (2094.39 rad/s). The radial

equilibrium boundary condition is used for the outlet. The key parameters of this rotor are

listed in Table 1 and further details of relevant parameters can be found in [19]. The influence

of the fan on inlet distortion is investigated using a simplified test case. Figure 3 illustrates

the computational domain and the boundary conditions considered in this simplified setup,

motivated by the experimental studies on the Darmstadt Rotor, albeit under 65% rotational

speed (1361.31 rad/s) and 10.6 kg/s mass flow rate. This is because the Darmstadt Rotor is

a transonic rotor and this shock waves may exist in the duct at the design point. To simplify

the problem, we need to avoid the influence of these shock waves. In addition, this test case

employs the original duct and the rotating fan, with a periodic beam installed upstream of the

fan. It features a sector duct with a distortion generator (‘beam’) of height ‘H ’ and length ‘1.5H ’

placed at an axial distance of ‘12.5H ’ from the inlet. The fan is positioned at a streamwise

distance of ‘5.25H from the beam and the velocity is normalised by u∞, measured in the main

flow near the tip of the beam, corresponding to the outer edge velocity of the separated shear

layer.

The primary objective of the current study is to capture the distortion generated on the

lower wall. Hence, an inviscid boundary condition is imposed on the upper wall, which en-

sures that the pressure distribution due to the spinner is well represented at a reduced compu-

tational cost. A radial equilibrium boundary condition is imposed at the outflow and periodicity

is imposed in the circumferential direction. The extent of the sector (corresponding to 5H)

is sufficient to ensure that structures are decorrelated in the circumferential direction. In this

mixed-fidelity framework, the beam is represented using a conventional IBM. The separated
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flow downstream of the beam is captured using an eddy resolving approach (LES), while the

force field of the rotating fan is replicated using the IBMSG approach.

3 COMPUTATION SETUP

In this section, some preparatory work relating to the intake-fan interaction using mixed-

fidelity modelling is described. This includes the verification of the geometry simplification as

well as grid independence studies. The former is performed using RANS, whereas the latter

applies different sizes of mesh using LES.

3.1 Geometry simplification

To reduce the computational cost, we ignore the circumferential influence and extract a

sector of the duct (30◦) with periodic boundary conditions. Hence, the first thing to establish is

that the periodic distortion generator does not significantly affect the axial and radial distribution

of the separation. This is achieved by considering two cases, one with a 360◦ beam and the

other with a 120◦ beam, respectively.

In Figure 4, inflectional points of the separation bubble are identified via the inflectional

points of the velocity. The height in the middle of the separation bubble for the 360◦ beam

is much higher than that for the 120◦ beam. However, the separation lengths are almost the

same. This means that the symmetry only thickens the bubble. According to this feature, we

may conclude that a symmetric beam (essentially a 360◦ beam) can replace an asymmetric

one in a meaningful way. In addition, although it is not possible to represent the bubble height,

the trend of the bubble height under various different circumstances can still be investigated

as long as the same original conditions are employed.

3.2 Mesh quality

This section examines the effect of the mesh on the intake distortions. Three sets of

meshes were tested, and the number of nodes for the coarse, mid-size and fine grids were

set to 1.1 million, 8.6 million and 60 million, as shown in Table 2. These differences represent

the dimensionless spacing in the streamwise and spanwise directions.

Figure 5 shows the results of the LESs with the fan in terms of the mass flux and pressure.
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These distributions are extracted at x = 4.5H. The figures indicate that the size of the grid does

not have a visible influence on the mass flux and total pressure distributions. This is perhaps

due to the fact that there is no typical boundary layer in the recirculation region, and hence

the usual wall spacing can be relaxed. This indicates that the coarse grid is sufficient for the

intake-fan interaction insofar as its effects on separation bubbles are considered.

4 Validation

4.1 Darmstadt Rotor

To verify the IBM- and IBMSG-modelled components are modelled accurately, the perfor-

mance map was simulated using RANS with IBM and compared with the experiment from

Wartzek [19].

In Figure 6, it is clear that the IBM beam and IBMSG-modelled fan can characterise the

general trend in the performance. The pressure ratios for both cases are well captured. How-

ever, the near-stall point is not accurately predicted and the choking mass flow rate of 16.4

kg/s cannot be approached, representing possible limitations of this method.

The total pressure distribution is also compared in order to investigate the response of

the rotor and stator. To achieve the best performance, the design point at 16.0 kg/s, 100%

rotational speed is selected. Figure 7 shows the flow field of the Darmstadt Rotor with an IBM

beam (120◦) and IBMSG-modelled fan.

The total pressure distribution is also compared against the passage data from Wartzek’s

experiment [19] and the URANS simulation. The circumferential distributions are extracted

at three axial locations (S1 − S3 shown in Figure 2, representing, respectively, the rotor entry,

rotor exit and stator exit. The data at these three locations can provide a detailed view of the

influence of the distortion on each individual component. The influence is characterised by the

total pressure ratio (for radial locations) and its relative value (for axial locations). They are

defined as the ratio of local total pressure to the inflow pressure,

πt,rel =
πt

πt

,πt =
pt

pt,inlet

. (5)
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This offers a general view of the total pressure variation in the circumferential direction at the

rotor entry and exit, as well as the stator exit. In Figure 8, the rotor rotates from the right to

the left and the results of the experiment, URANS simulation and RANS (SA model) simulation

with IBM are included. The overall trend in all three cases is captured. The relative total

pressure ratio increases from frames (a) to (c) within the separation region, meaning that the

distortion recovers downstream of the beam, from the rotor inlet to the stator outlet. However,

this distortion is maintained through to the stator exit.

In frame (a), it should be noticed that, upstream of the rotor, the relative total pressure ratio

from the RANS with IBM is slightly higher than is observed in the other two cases. This discrep-

ancy may be due to the hypothesis of infinite blades, which seems to suppress the separation

more than finite blades. To investigate the separation behaviour, an entry side and exit side

are defined, highlighting the beam installation region. These two lines also represent the rotor

entry and exit boundaries. Around this region, the separation detected by the experiment (ap-

proximately 100◦) is smaller than the ‘entry-exit’ labelled beam region (120◦) because the low

pressure downstream narrows the separation. However, the predictions from both RANS and

URANS are much larger at the rotor inlet in frame (a). This problem could be tackled by LES

in the future. Liu et al. [31] also found that the Spalart-Allmaras model predicts much larger

separation bubbles in compressors. Hence, an innovative modification method was proposed

based on helicity in order to consider turbulence energy backscatter, which can be substantial

in the region of corner separation in compressors [31, 32]. Both of these could be potential

methods to improve the accuracy of the simulation of fan-distortion interactions. Interestingly,

a W-shape was detected upstream of the rotor in Wartzek’s experiment [19] which seems to

be caused by the corner vortices and the separation line shear layer at the beam edge [33].

These intensify the total pressure loss at the edges of the separation region, although in the

centre, the loss still remains at the original level (Figure 9). However, this is not shown in the

present numerical simulation because the RANS method is not able to resolve such unsteady

vortices.

Downstream of the rotor in frame (b), although the distribution from RANS with IBM is

slightly different in terms of the amplitude, it indeed captures the feature of fan rotation. The

11 TURBO-18-1136, Cui



rotor increases the total pressure ratio at the exit side compared to the entry side. In both

frames (b) and (c), the intermittency of the total pressure at each blade region cannot be cap-

tured, compared with the result from URANS. This is because the blade geometry is smeared

when using the IBMSG method.

The circumferential distributions at different radial locations are also compared. Three dif-

ferent radial locations are chosen; 10%, 50%, 90% of the annulus height at the stator outlet. In

Figure 10, although the general trend is captured by the RANS with IBM, it should be noticed

that the prediction at the hub (10%) is the most accurate. The reason could be that, at the

midspan, the infinite blade hypothesis would dominate the impact on the blade performance,

and thus intensify the total pressure recovery; at the shroud, however, the SA modelled dis-

tortion would have a stronger defect that overpredicts the total pressure loss. In terms of the

separation influence downstream, it appears that the biggest variation is at the hub, whereas

such a variation is almost invisible at the shroud.

To validate how the IBM beam and IBMSG-modelled fan characterise the separation be-

haviour, the mass flux distribution is depicted in Figure 11. This includes the results from both

the mesh resolved case and the modelled case. In this figure, the radial location is the relative

blade height; the mass flux is referenced to the area average. The data were extracted at

a distance of 10% of the blade chord upstream of the rotor entrance. It is obvious that the

momentum deficit occurs between R = 0 and 1.5H, where the beam is installed.

These result demonstrate that, although the separation affects the total pressure distri-

butions across the rotor and stator, the IBMSG-modelled rotor can, at least, still accurately

capture the main flow features upstream the rotor compared to the experiment and resolved

case. This means that separated flows do not have an obvious impact on the application of

the IBMSG method.

5 FAN INFLUENCE ON DISTORTION

5.1 Fan location

The effects of fan location are discussed in this section. To explore how the distance be-

tween fan and the distortion generator will affect the distortions, the original blade is moved
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downstream to two different locations: a distance of a half-chord and a full chord, correspond-

ing to x = 5.2/6.2/7.2H.

Figure 12 illustrates the time-averaged axial velocity contour and Q-isosurface of these

three cases. A detailed comparison (Figure 13) shows that the original location has the

highest effect in terms of increasing of the mass flux and total pressure ratio. A blade location

which is further away will have less of an influence in suppressing the separation.

To quantify this blade effect, we define a Recovery Factor to describe how well the blade

will cope with the intake distortion and improve the flow condition. Firstly, we introduce a

mass-weighted total pressure loss Pt,loss,

Pt,loss = 1−

∫
ptdṁ

pt,inṁ
. (6)

This reflects the total pressure loss at a designated position, e.g., 10% of the blade chord

upstream the leading edge. Then a Recovery Factor is defined as,

RF = 1−
Pt,loss

Pt,loss,NF

, (7)

where NF means ‘no fan’. This quantifies the percentage of the total pressure recovery when

a fan is installed compared to the single duct without a fan. These RFs for the fan at different

locations are depicted in Fig. 14.a, and all of the data are extracted from the same axial

location x = 4.5H, 10% of the blade chord upstream of the original blade leading edge. Hence,

it is obvious that the fan nearer to the intake will considerably improve the total pressure ratio.

This is reasonable because a nearer fan can stop the development of the separation much

earlier.

5.2 Inlet Distortion

The effects of the various degrees of distortion are discussed in this section. To simulate

these distortions, two types of bevelled beams were installed at the same location with the
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original case conditions. Figure 15 illustrates the flow distributions of these cases, where both

the influence of fan and that of the beam can be compared.

To quantify the effect of these distortions, the relative total pressure loss is illustrated in

Figure 16. This figure shows that, when the height of the beam is changed linearly, the

distortion-induced loss varies exponentially. This can be also demonstrated by the case of

the flow distribution without a fan in Figure 17.

In this figure, the original distortion (or full-scale beam) has a remarkable influence on the

main stream, compared to the other two cases. The mass flux is completely redistributed

throughout the channel, and the main flow sees a nearly 20 % change in its magnitude. In

contrast, the distortion does not have a very great impact on the main flow when using the

1/2H and 1/4H beams. The total pressure loss is also significant for the full-scale beam, at

nearly 11% within the separation region and 2% for the main flow. Figure 18 shows how the

blade responds to these various distortions.

Evidently, the fan is capable of alleviating the distortions. The effect for the original beam is

the most significant, showing a 20% increase in mass flux and a 2% increase in total pressure.

The effects for the 1/2H and 1/4H beams are minor. Equation 7 is used to quantify this effect

and Figure 14.b shows the Recovery Factor of the fan when coping with these distortions.

Obviously, the improvement due to the fan for the full-scale beam is remarkable, at around

44%. This proves that the proposed blade is capable of reducing the intake distortion, even if

the flow condition has been significantly changed by the full-scale beam.

CONCLUSION

In the present research, the distortion generator is modelled using IBM; both the rotor

and stator blades are approximated by the IBMSG method. The validation of the modelled

components demonstrates that this mixed-fidelity modelling approach can be applied as a

suitable tool for predicting the characteristics of intake-fan interaction. The RANS simulation

indicates that these models can predict the general trends in performance. At the rotor inlet,

exit and stator exit, the total pressure distributions agree well with the experimental data. It

should be noted that the radial distribution at the stator exit has some differences due to the
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infinite blade assumption. Despite this, generally, the trend of the distortion development in

the axial direction can be captured and the true total pressure ratio can be approximated.

Hence, we may conclude that the mixed-fidelity modelling method can reflect the behaviour of

intake-fan distortion.

This mixed-fidelity method is then applied to the investigation of the fans influence on the

intake distortion. Results indicate that the location of fan has a significant influence on intake

distortion. The nearer the downstream fan, the stronger the influence in terms of suppressing

separation. The fan at the proposed location can recover 45% of the loss. This is because the

rotational fan can accelerate the upstream flow at the casing, thereby reducing the separation

bubble and alleviating the distortion.

Various sizes of distortion are also studied. This is achieved by changing the beam height.

It is found that the original beam has such a significant influence that even the main flow can

be changed by almost 20%. Nevertheless, the proposed blade is still capable of weakening

such distortions. The effects of the blade at different beam heights are also quantified with

the conclusion that, when the distortion is larger, the fan has a larger effect. This change

is non-linear, and when the beam height is reduced to H/4, the Recovery Factor becomes

RF/7. This means that a well-designed blade could show substantial power when dealing with

any possible intake distortion. Hence, the fan could form an essential component for intake

distortion control.

Further studies will include the investigation of the mechanism of fan behaviour in regard to

the inlet distortion. This could be done by analysing the Reynolds stresses and turbulent kinetic

energy budgets from LES results. These results are expected to provide detailed information

about how turbulence is generated, transformed and dissipated within the recirculation region,

and how the fan behaves in this process.
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Nomenclature

fff force

H height of the beam

K viscosity coefficient of parallel force

k1 coefficient for viscosity distribution

nnn normal vector to the blade surface

t time or blade thickness

p pressure

uuu velocity

x x coordinate

xxx0 body/surface coordinate

∆y+ dimensionless wall distance

∆x+ dimensionless streamwise distance

∆z+ dimensionless spanwise distance

ρ density

α,β feedback forcing coefficients

λ blockage factor

πt total pressure ratio

Pt,loss mass-weighted total pressure loss

CFD Computational Fluid Dynamics

RF Recovery factor

RANS Reynolds Averaged Navier-Stokes

URANS Unsteady Reynolds Averaged Navier-Stokes

LES Large Eddy Simulation

IBM Immerse Boundary Method

IBMSG Immersed Boundary Method with Smeared Geometry

SA Spalart-Allmaras turbulence model

k−ω k−ω turbulence model
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Fig. 1: Hierarchy of turbulence and geometry modelling
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Fig. 2: Sketch of the Darmstadt Rotor test case setup for validation
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Fig. 3: Sketch of the test cases for varying (a) fan-locations and (b) beam heights
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Tables

Table 1: Key parameters of the Darmstadt Transonic Compressor, from Wartzek [19]

max. power 800 kW

max. torque 350 Nm

outer diameter 0.38 m

hub-to-tip-ratio 0.51

rotor blades 16

stator blades 29

65% speed 13,000 rpm

design mass flow 10.6 kg/s
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Fig. 5: Prediction of wall-normal profiles of (a) mass flux and (b) total pressure at x = 4.5H

using different meshes

Table 2: Grid spacing for the region between the beam and fan

Grid size ∆x+ ∆y+ ∆z+ Number of nodes

Coarse grid 150 1 100 8,600,100

Fine grid 75 1 30 59,371,200
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Fig. 6: Performance map of the Darmstadt Rotor at (a) 100% speed and (b) 65% speed. SC

represents Smooth Casing and B120 represents 120◦ beam.
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(a) Axial velocity distribution on the meridional plane

(b) Total pressure distribution on the cross section at upstream the rotor

trailing edge

Fig. 7: Contours of (a) axial velocity on meridonial plane and (b) Total pressure upstream of

rotor trailing edge at 100% speed
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rotor inlet; (b) rotor outlet; (c) stator outlet at 100% speed, radially averaged by area
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Fig. 9: Separation region downstream the beam
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(a) Location 1 x = 6.2H

(b) Location 1 x = 7.2H

Fig. 12: Q-isosurfaces (Q = 1× 107) coloured with axial velocity for different fan-locations (a)

x = 6.2H and (b) x = 7.2H
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Fig. 13: Effects of different blade locations on (a) mass flux and (b) total pressure ratio
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Fig. 14: Recovery Factor with varying (a) fan-locations and (b) beam heights
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(a) 1/2H, with fan

(b) 1/4H, with fan

Fig. 15: Q-isosurfaces (Q=1×107) coloured with axial velocity for different beam heights
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Fig. 16: Total pressure loss with increasing beam height
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Fig. 17: Effect of different degrees of distortion on (a) mass flux and (b) total pressure ratio in

the absence of fan
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Fig. 18: Effect of different degrees of distortion on (a) mass flux and (b) total pressure ratio.

‘Loc0’ corresponds to the case with fan placed at x = 5.2H and ‘Duct’ corresponds to the case

without fan.
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