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a b s t r a c t 

In this work, the local correlation-based one-equation transition model (Menter, F.R., Smirnov, P.E., Liu, T. 

and Avancha, R., A one-equation local correlation-based transition model. Flow, Turbulence and Combus- 

tion, vol. 95, no. 4, pp. 583–619, 2015.) is transformed into a zero-equation transition model. The new 

model provides an attractive choice in terms of quick implementation of a transition model in existing 

turbulent flow solvers with Menter’s shear-stress transport (SST) turbulence model, as it only introduces 

three extra source terms in the transport equation of turbulent kinetic energy. The model is validated 

against a set of benchmark flat-plate test cases: T3 series and SK, and also subsonic flows past two dif- 

ferent airfoils: Aerospatiale A-airfoil ( Re = 2 . 1 million) and E387 ( Re = 0 . 2 million), and finally applied to 

a transonic flow over 3D DLR-F5 wing ( Re = 1 . 5 million). Results show that the proposed model produces 

similar transition prediction as the one-equation transition model, with a reduced computational effort. 

The computations are performed with an in-house finite-volume solver for compressible turbulent flows 

on block-structured grids. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Laminar-to-turbulent transition is a complex phenomenon af- 

fected by a large number of parameters like free-stream turbulence 

intensity, pressure gradient, Reynolds number, Mach number, sur- 

face temperature, etc. [1–5] . This wide range of parameters lead to 

different types of transition mechanisms: natural transition [6] , by- 

pass transition [7] , cross-flow transition [8] , etc. As such, it is chal- 

lenging for single-physics based transition models, like the e N lin- 

ear stability theory [9,10] for natural transition, the low Reynolds 

number turbulence model [11] for bypass transition, to predict all 

the different paths to transition. Although LES (Large Eddy Simu- 

lation) and DNS (Direct Numerical Simulation) [12,13] are suitable 

for transition prediction, the amount of computational memory re- 

quired and time consumed for even a simple geometry is large. 

The experimental correlation-based transition models [1,14–

18] provide a unified concept, which can handle the different tran- 

sition mechanisms, but suffers from one major issue: compatibility 

with modern-day code and computer architecture due to the use 

of integral boundary layer parameter. There are certain features of 

modern-day CFD codes that impose few restrictions on the model 

formulation, detailed in Langtry and Menter [19] . M. Lorini et al. 

[20] have tried to bypass the compatibility issue in their finite- 

element method by defining a wall-normal integral cell line and 
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making sure that this line is not decomposed into separate do- 

mains by using a specialized domain partitioning procedure. How- 

ever, it remains to be seen if this approach will work for a complex 

domain. Menter et al. [21] presented an idea to remedy the short- 

coming of the correlation-based transition model by replacing the 

integral parameter used in the model, Re θ , with local parameter 

Re v , based on the relation presented first in Blumer and Van Dri- 

est [22] (shown in Eq. (1) ) and termed it Local Correlation-based 

Transition Modeling (LCTM). Fig. 1 shows the variation of scaled 

Re v within the boundary layer for the Blasius profile. The quantity 

Re v reaches a maximum value in the middle of the boundary layer. 

Re θ = 
max ( Re v ) 

2 . 193 
(1) 

where, 

Re v = 
ρy 2 

μ
S (2) 

where, y is wall-distance and S is the absolute value of strain 

rate, (2 S ij S ij ) 
1/2 . The two-equation γ − Re θ model was developed 

based on the LCTM concept [3,19,23–26] , but the model was not 

Galilean invariant and contained complex correlations. The succes- 

sor of the γ − Re θ model, the one-equation γ model [27] , removed 

some of the shortcomings of its predecessor, and reduced the 

model’s complexity. The single intermittency ( γ ) transport equa- 

tion based transition models were also proposed in Coder and 

Maughmer [28] , Ge et al. [29] . Bas et al. [30,31] went a step fur- 

ther by replacing the transport equation of the transition variable 

https://doi.org/10.1016/j.compfluid.2020.104758 

0045-7930/© 2020 Elsevier Ltd. All rights reserved. 



J.P.S. Sandhu and S. Ghosh Computers and Fluids 214 (2021) 104758 

θ

Fig. 1. Profile of scaled strain-rate Reynolds number in a Blasius boundary layer. 

with a function for intermittency, creating an algebraic transition 

model (“BC” transition model) and integrated it with the Spalart 

Allmaras (SA) [32] turbulence model. The intermittency function 

in “BC” algebraic transition model controls the production term in 

the SA model to predict the laminar to turbulence transition. The 

BC transition model is, however, not Galilean invariant and utilizes 

the freestream turbulence intensity, as opposed to the local turbu- 

lence intensity, in the correlation for transition prediction. The BC 

transition model also depends on the flow Reynolds number and 

requires modification in the inlet conditions of the original SA tur- 

bulence model. 

Apart from the local correlation-based transition models, there 

are laminar-kinetic-energy based transition models. These models 

are based on the shear-sheltering concept [33] and solve a sepa- 

rate transport equation of laminar kinetic energy or a similar quan- 

tity [34–36] and even add a second transport equation of intermit- 

tency [37] . Recently, Kubacki et al. proposed an algebraic laminar- 

turbulent transition model based on the same concept for bypass 

transition in turbomachinery flows [38] . They further extended the 

model’s capability for separation-induced and wake-induced tran- 

sition [39] . Interestingly, Mishra et al. [40] were able to predict 

the laminar-separation-bubble induced transition by just introduc- 

ing the non-linear corrections to the SST turbulence model. 

In this work, we propose a new local correlation-based zero- 

equation transition model, which can predict transition due to 

causes (natural, bypass, or separation induced) for which corre- 

lations are formulated. Inspired by work done for the develop- 

ment of one-equation turbulence model [41] , the local correlation- 

based one-equation γ transition model [27] , combined with the 

two-equation k − ω/k − ǫ SST2003 [42] turbulence model is trans- 

formed into a zero-equation LCTM by defining a new variable: k γ
as 

k γ = γ k (3) 

where γ is the intermittency and k is the turbulent kinetic en- 

ergy. In the fully turbulent boundary layer, the k γ variable phys- 

ically represents turbulent kinetic energy k . Although we derive 

the transport equation of the newly defined k γ variable from the 

transport equations of k and γ , the final form of the model essen- 

tially solves the transport equation of turbulent kinetic energy ( k ), 

similar to the SST turbulence model, with few additional source 

terms that give it the ability to predict transition. As such, the new 

model, in its entirety, can also be thought of as a two-equation 

turbulence-transition model. Although the new formulation does 

not try to reduce the complexity of the underlying one-equation 

γ transition model, it reduces the complexity of its implementa- 

tion (related to construction of Jacobian matrices for fully implicit 

time integration of discretized equations) by reducing the num- 

ber of transport equations to be solved for the combined turbu- 

lence/transition model. 1 As the proposed model introduces a new 

variable k γ , it is named as the k γ transition model. 

The outline of the rest of the paper is as follows. Section 2 pro- 

vides the details of the flow solver utilized for the current study, 

and the detailed model formulation of the new k γ transition 

model. Section 3 presents the validation of the new transition 

model along with its comparison with the one-equation γ transi- 

tion model for a set of benchmark flat-plate test cases: Schaubauer 

and Klebanoff (SK) test case [43] , and T3 series test cases [44] . The 

capability of the new k γ transition model to predict transition is 

also tested for two different airfoils: Aerospatiale A [45] and Ep- 

pler 387 airfoil [46] , and a 3D test case: DLR-F5 wing [47] . 

2. Methodology 

2.1. Flow solver 

All the numerical simulations presented here are performed us- 

ing an in-house finite volume solver, FEST-3D [4 8,4 9] . It solves the 

compressible-flow based three-dimensional, Favre-averaged [50] , 

Navier-Stokes equations on a structured grid. Governing equations 

used in FEST-3D are of the following form: 

∂ρ

∂t 
+ 

∂ 

∂x j 
(ρu j ) = 0 (4) 

∂(ρu i ) 

∂t 
+ 

∂ 

∂x j 
(u j ρu i ) = −

∂ p 

∂x i 
+ 

∂ 

∂x j 

(
2 μe f f 

(
S i j −

1 

3 

∂u k 
∂x k 

δi j 

)
−

2 

3 
ρkδi j 

)

∂(ρE) 

∂t 
+ 

∂ 

∂x j 
(u j ρH) = 

∂ 

∂x j 

(
2 μe f f 

(
S i j −

1 

3 

∂u k 
∂x k 

δi j 

)
−

2 

3 
ρkδi j 

)
u i 

+ 
∂ 

∂x j 

((
c p ̂  μ

P r 
+ 

c p ̂  μt 

P r t 

)
∂T 

∂x j 
+ 

(
μ + 

μt 

σk 

)
∂k 

∂x j 

)

where, ρ is density, and u i is local velocity. The total enthalpy, H , 

is given by: 

H = E + p/ρ (5) 

E being the total internal energy. In FEST-3D, there is an option to 

use either constant viscosity or use Sutherland’s law to determine 

the local value of dynamic viscosity using the local temperature, T 

as 

μ = μ0 

(
T 

T 0 

)3 / 2 (T 0 + T S 
T + T S 

)
(6) 

where μ0 = 1 . 716 × 10 −5 kg/(ms), T 0 = 273 . 15 K, and T S = 110 . 4 K. 

The effective viscosity μeff is a sum of turbulent viscosity ( μt ) and 

molecular viscosity ( μ). The expression for turbulent viscosity de- 

pends on the turbulence model being used. For SST2003 turbu- 

lence model used in this study, μt is evaluated as: 

μt = 
ρa 1 k 

max ( a 1 ω, F 2 S ) 
(7) 

where, k is turbulent kinetic energy, ω is specific turbulence dissi- 

pation rate, S is the absolute value of strain rate, and 
 is absolute 

value of vorticity. The reader can refer to [42] for the constant a 1 
and blending function F 2 . 

FEST-3D provides several options in terms of turbulence mod- 

els, high-resolution methods for face-state reconstruction, inviscid 

flux reconstruction, and time-integration, details of which can be 

found in Singh Sandhu et al. [48] . The current work utilizes the 

1 The reduction in the number of equations also reduces the memory require- 

ment and computational cost per iteration. 
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3rd order accurate MUSCL [51] scheme as the face-state recon- 

struction method, AUSM+-UP [52] as the inviscid flux reconstruc- 

tion method and matrix-free LU-SGS [53] as the implicit time- 

integration method. For low Mach number flow, preconditioning 

[54] is applied to the LU-SGS scheme to obtain better convergence. 

Such choice of flux reconstruction and time-integration scheme is 

motivated by the work of Kitamura et al. [55] . 

2.2. k γ transition model 

The formulation of the k γ transition model is described in this 

section. The transport equation for k γ is first derived, and then 

new terms appearing in the equation are modeled. 

In order to formulate the zero-equation transition model, the 

unsteady transport of the term k γ is expressed in terms of the 

unsteady transport of turbulent kinetic energy and intermittency. 

Thus, 

∂ρk γ

∂t 
+ 

∂u j ρk γ

∂x j 
= 

∂ργ k 

∂t 
+ 

∂u j ργ k 

∂x j 

= γ

(
∂ρk 

∂t 
+ 

∂u j ρk 

∂x j 

)
+ k 

(
ρ

∂γ

∂t 
+ ρu j 

∂γ

∂x j 

)

= γ

(
∂ρk 

∂t 
+ 

∂u j ρk 

∂x j 

)
+ k 

(
∂ργ

∂t 
+ 

∂u j ργ

∂x j 

)

− γ k 

(
∂ρ

∂t 
+ 

∂u j ρ

∂x j 

)

Since from continuity equation, ∂ρ
∂t 

+ 
∂u j ρ

∂x j 
= 0 , this implies: 

∂ρk γ

∂t 
+ 

∂u j ρk γ

∂x j 
= γ

(
∂ρk 

∂t 
+ 

∂u j ρk 

∂x j 

)
+ k 

(
∂ργ

∂t 
+ 

∂u j ργ

∂x j 

)

(8) 

In Eq. (8) , the right hand side contains the unsteady transport 

terms of ρk and ργ and need to be replaced with the source and 

diffusion terms from the corresponding transport equations. In or- 

der to keep the discussion brief, the original transport equations 

of k and γ are not presented here and one can refer to [27] for 

details of the terms used in following equation: 

∂ρk γ

∂t 
+ 

∂u j ρk γ

∂x j 
= γ

(
P k + P k 

lim 
− E k + 

∂ 

∂x j 

[
( μ + σk μt ) 

∂k 

∂x j 

])

+ k 

(
P γ − E γ + 

∂ 

∂x j 

[(
μ + σγ μt 

) ∂γ

∂x j 

])
(9) 

Here, P φ , E φ , D φ represent the production, destruction, and diffu- 

sion terms in the transport equation of the variable φ ∈ { k, γ } re- 

spectively. The terms σ k and σ γ are the diffusion coefficients for k 

and γ variables respectively. To keep the derivation simple and re- 

produce the behavior of the SST model in the fully turbulent flow, 

the following assumption is made here: 

σγ = σk (10) 

Now, using Eq. (10) , the Eq. (9) can be rewritten as: 

∂ρk γ

∂t 
+ 

∂u j ρk γ

∂x j 
= P (k ) 

k γ
+ P lim 

k γ
− E (k ) 

k γ
+ D 

(k ) 
k γ

+ P 
(γ ) 
k γ

− E 
(γ ) 
k γ

+ D 
(γ ) 
k γ

(11) 

where the derivation of each source and diffusion term is detailed 

in Appendix A . The source and diffusion terms which are similar in 

appearance to those in the original k transport equation are given 

the superscript ( k ) and others the superscript ( γ ) respectively. 

In order to interpret the transport equation of k γ as that of k 

in Eq. (11) , the definition of k γ variable is invoked in the different 

parts of the boundary layer. Since intermittency is zero in the lam- 

inar flow region and unity in the fully turbulent flow region, k γ
can be written as a piece-wise function. 

k γ = 

{ 
k = 0 , in the laminar boundary layer 
k γ , in the transition flow region 
k, in the fully turbulent flow region 

(12) 

As seen in literature [31,38] , the length of transition region pre- 

dicted by the zero-equation/algebraic transition models is very 

short. Thus, we do not consider the transition region for model- 

ing, and we replace the k γ variable in Eq. (11) with k . 

k γ = k (13) 

Hence, the transport equation of k γ is written as a transport equa- 

tion of k as: 

Dρk 

Dt 
+ ρk 

∂u j 
∂x j 

= P k + P lim 
k − E k + 

∂ 

∂x j 

[
( μ + σk μt ) 

∂k 

∂x j 

]
+ �k γ

(14) 

where, 

�k γ = P 
(γ ) 
k 

− E 
(γ ) 
k 

+ D 
(γ ) 
k 

(15) 

In doing so, we are able to incorporate the effect of γ trans- 

port equation into the transport equation of k with the additional 

source terms: �k γ , to predict transition directly. A point to note 

about Eq. (14) is that it contains terms with the variable inter- 

mittency, which is not known and needs to be approximated. We 

choose to approximate the unknown intermittency in Eq. (14) such 

that it introduces the required near-wall viscous damping effect. 

There are different ways to estimate the intermittency to produce 

this effect. In this study, we follow the viscous damping function 

used in Walters and Cokljat [34] , and estimate intermittency ( ̃  γ ) 

using turbulent Reynolds number ( R T ) as: 

γ ≈ ˜ γ = 
(
1 − e −R T 

)n 
(16) 

and, 

∂ ̃  γ

∂x i 
= 

nρ˜ γ (n −1) /n 

μω 

(
∂k 

∂x i 
−

k 

ω 

∂ω 

∂x i 

)
e −R T (17) 

where, 

R T = 
ρk 

ωμ
(18) 

In order to obtain the gradient of ˜ γ in Eq. (17) , the gradient of 

density ( ρ) and molecular viscosity ( μ) have been ignored. 

A point to note about the modeling of γ is that although the 

use of R T in ˜ γ is an obvious choice, it makes the model sensitive 

to initial conditions for low freestream turbulence intensity cases, 

as shown in Appendix B . This shortcoming may potentially be re- 

moved by introducing a different approximation for ˜ γ (which is 

both accurate and is not sensitive to initial conditions). The current 

form of the k γ model is calibrated for freestream initial conditions. 

Additionally, unlike the intermittency used in Cakmakcioglu et al. 

[31] , Kubacki and Dick [38] , the approximated intermittency ˜ γ it- 

self can not predict transition in the present framework, and relies 

on F onset to trigger transition. 

Fig. 2 shows the variation of the estimated intermittency ( ̃  γ ) 

in the wall-normal direction for SK flat plate test case [43] in the 

fully turbulent and laminar flow region. The wall-normal distance 

is normalized with boundary layer thickness ( δ). The constant ‘ n ’ in 
Eq. (16) is calibrated such that the estimated intermittency is zero 

in laminar region and matches with γ from one-equation transi- 

tion model in the fully turbulent region. From Fig. 2 a it can be 
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Fig. 2. Comparison of intermittency and its approximation for the SK test case in (a) turbulent flow at Re x = 519885 , and (b) laminar flow at Re x = 50841 . 

observed that when n = 3 , the estimated intermittency ( ̃  γ ), repre- 

sented by the solid line, is close to the intermittency ( γ ), repre- 

sented by the dashed line, obtained using the one-equation tran- 

sition model. In the laminar region, the quantity R T ( Eq. (18) ) van- 

ishes quickly from its freestream value as one approaches the wall. 

Hence, ˜ γ , represented by the solid line, has a zero value in the 

laminar boundary layer, as shown in Fig. 2 b. 

Using the estimated intermittency ( ̃  γ ), all the source terms in 

Eq. (14) are defined as: 

P k = ̃  γμt S
 = 
˜ γ ρa 1 k 

max ( a 1 ω, S F 2 ) 
S
 (19) 

E k = max ( ̃  γ , 0 . 1) β∗ρωk (20) 

P 
(γ ) 
k 

= F length ρS(1 − ˜ γ ) F onset k (21) 

E 
(γ ) 
k 

= ̃  γC e 1 ρ
F turb k (22) 

D 
(γ ) 
k 

= −C d1 μe f f 
∂k 

∂x j 

∂ ̃  γ

∂x j 
(23) 

Here, 

F turb = e 
−

(
R T 
2 

)4 

(24) 

and the onset of transition is controlled by the following func- 

tion: 

F onset = max (F onset2 − F onset3 , 0 . 0) (25) 

where, 

F onset2 = min (F onset1 , 2 . 0) (26) 

and 

F onset3 = max 

(
1 −

(
R T 
3 . 5 

)3 

, 0 

)
(27) 

In Eq. (26) , the term F onset 1 is defined as, 

F onset1 = 
Re v 

2 . 2 Re θc 
(28) 

Also, Re θc is calculated using the following correlation: 

Re θc = 100 . 0 + 10 0 0 . 0 exp (−T u L F PG ) (29) 

Here, the terms Tu L and F PG are functions that account for the 

effects of local turbulence intensity and pressure gradient in the 

flow. They are defined as: 

F PG = 

{
min (1 + 14 . 68 λθL , 1 . 5) , λθL ≥ 0 
min (1 − 7 . 34 λθL , 3 . 0) , λθL < 0 

(30) 

and 

T u L = min 

( 

100 

√ 

2 k/ 3 

ωd w 
, 100 

) 

(31) 

Here, d w is the wall distance. The pressure gradient parameter, λθL , 

is defined as 

λθL = −7 . 57 . 10 −3 dV 

dy 

d 2 w 
ν

+ 0 . 0128 (32) 

The term 
dV 
dy 

can be computed as: 

dV 

dy 
= ∇( � n . � V ) . � n (33) 

where, 

� n = 
∇(d w ) 

|∇(d w ) | 
(34) 

The results for the T3C2 flat plate test case: evolution of skin 

friction coefficient ( C f ) along the length of plate ( Re x = ρU in f x/μ) 

and contours of normalized (with freestream speed of sound, a ref ) 

k γ , using the k γ model, are shown in Fig. 3 . It can be seen from 

Fig. 3 a that the k γ model predicts early transition in this case. This 

is corroborated in Fig. 3 b wherein it can be observed that normal- 

ized k γ reaches high values close to the leading edge of the plate. 

In Fig. 3 b, ‘X’ is along the length of the plate, and ‘Y’ in the wall- 

normal direction, and approximate edge of the boundary layer is 

shown with a white line. 

The reason for this early prediction of transition was deter- 

mined to be the following: with the original F length from [27] , the 

order of the production terms arising from the transport equation 

of intermittency, P 
(γ ) 
k 

, is about 100(γ − 1) /γ times higher than its 

counterpart P k , so that even a small value of F onset function can 

trigger a permanent transition. As such, a modification to the k γ
model was made by reducing the F length to be unity, and tuning the 

other coefficients accordingly. The final values of the coefficients 

used are listed in Eq. (35) . 

F length = 1 (35a) 

C e 1 = 0 . 03 (35b) 

4 
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Fig. 3. Results for the T3C2 test case with the original model constants: F length = 

100 , C e 1 = 3 , and C d1 = 2 . 

Fig. 4. Results for the T3C2 test case with the modified model constants: F length = 1 , 

C e 1 = 0 . 03 , and C d1 = 0 . 02 . 

Table 1 

Inlet conditions for flat plate test cases. 

Case U[m/s] Tu(%) μt / μ Re ∞ (L Re f = 1 m) 

T3A 5.20 3.5 12 3.5 × 10 5 

T3B 9.40 6.2 100 6.3 × 10 5 

T3A- 19.80 1.0 8 1.4 × 10 6 

S&K 50.10 0.03 1 3.4 × 10 6 

T3C1 6.10 7.0 60 4.1 × 10 5 

T3C2 5.25 3.1 9 3.5 × 10 5 

T3C3 3.90 3.1 6 2.6 × 10 5 

T3C5 8.90 3.8 15 5.9 × 10 5 

C d1 = 0 . 02 (35c) 

The evolution of the skin friction coefficient and contours of 

normalized k γ (with the edge of the boundary layer represented 

by white line) with the new set of coefficients are again plotted 

in Fig. 4 . As can be seen in Fig. 4 , this results in much better pre- 

diction of transition. Contours of normalized k γ reveal that in this 

case, the transition location has been pushed down to about 1.25 m 

from the leading edge of the plate. 

3. Validation 

The k γ model is validated against a set of common benchmark 

test cases for transition modeling: the ERCOFTAC (European Re- 

search Community on Flow, Turbulence, and Combustion) T3 se- 

ries of experimental flat plate test cases [44] , which are listed in 

Table 1 . The experimental setup consisted of a flat plate of 1.5 m 

of length with a rounded leading edge of 0.75 mm radius mounted 

in a wind-tunnel test section. The T3A, T3B, and T3A- test cases 

were performed with zero pressure gradient and 3.0, 6.0 and 1.0% 

freestream turbulence intensity respectively, which makes bypass 

as the dominant transition mechanism. The Schubauer and Kle- 

banoff (S&K) flat plate experiment [43] , performed in relatively 

quiet wind tunnel conditions with a freestream turbulence inten- 

sity of 0.03%, is used here to validate the k γ model’s prediction of 

natural transition mechanism. The rest of the T3 series test cases 

were performed with a high free-stream turbulence intensity, as 

listed in Table 1 , and a streamwise pressure gradient was imposed 

due to the convergent-divergent upper wall of the wind tunnel. 

3.1. Computational details 

For all the validation simulations, air is assumed as the work- 

ing fluid with freestream density of ρ = 1 . 2 kg/m 3 and constant 

viscosity of μ = 1 . 8 × 10 −5 kg/m/s. To obtain better convergence 

for low-speed validation test cases, AUSM+-UP [52] is used as the 

flux-reconstruction scheme with preconditioned [54] LU-SGS as 

the time integration method for all the validation simulations. The 

inlet conditions for these test cases are given in Table 1 . The inlet 

turbulent kinetic energy and viscosity ratio, listed in Table 1 , are 

determined via trial and error such that the decay of freestream 

turbulent kinetic energy in the simulation matches with experi- 

mental data [44] . 

For S&K and T3 series flat plate test cases without pressure gra- 

dient (T3A, T3B, and T3A-), a similar rectangular domain with a 

structured grid, clustered near the leading edge, is used, as shown 

in Fig. 5 a. The computational domain consists of a 1.5 m long hor- 

izontal, adiabatic, no-slip flat plate with a vertical inlet plane lo- 

cated at a short distance of 0.04 m ahead of the leading edge of 

the plate, which allows the prescription of uniform velocity and 

density at the inlet. The inviscid region between the leading edge 

and inlet plane is kept short as experimental data [44] does not 

contain any information about the flow ahead of the leading edge 

of the plate. The horizontal top boundary at 0.8 m above the flat 

plate was treated with symmetry boundary condition. At the ver- 

tical outflow plane, a pressure of 103320 Pa is imposed. 

For the flat plate test cases with a pressure gradient, the com- 

putational domain (shown in Fig. 5 b) consisted of a 1.65 m long 

horizontal, adiabatic, no-slip flat plate with vertical inlet plane sit- 

uated at 0.1 m ahead of the leading edge of the plate. The bound- 

ary conditions at the inlet and outlet planes are the same as in 

the zero pressure gradient test cases. The contour of the upper slip 

wall is obtained from the explicit expression given in [56] . The dis- 

tance between the upper and lower wall is 0.3 m at the inlet plate. 

The profile of the upper wall and comparison of predicted nor- 

malized freestream velocity with experiment [44] having the same 

upper-wall profile is shown in Fig. 6 . 

3.2. Grid convergence study 

A grid refinement study is performed to ensure grid indepen- 

dence of the solution for the flat plate test cases. Grids are gen- 

erated using the meshing guidelines provided in Menter et al. 

[27] for the one-equation γ transition model, which ensures that 

the same grid can be employed to make a comparison between k γ
and γ transition models. Four different grid levels are used for the 

study: “Level 0”, “Level 1”, “Level 2” and “Level 3” for both zero 

pressure gradient and pressure gradient test cases, wherein “Level 

0” is the finest and “Level 3” is the coarsest mesh. The “Level 1”

grid is obtained from “Level 0” grid by removing every alternate 

point in both streamwise and wall-normal direction. Similarly, the 

“Level 2” and “Level 3” grids are obtained using the same approach 

from the “Level 1” and “Level 2” grids respectively. Details about 

the grid dimensions and number of points on the plate at each 
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Fig. 5. Level 3 grid used for convergence study of flat plate test cases. 

Table 2 

Grid details. 

Grid level Zero pressure gradient Non-zero pressure gradient Points on the plate 

Level 0 569 × 321 577 × 257 505 

Level 1 285 × 161 289 × 129 253 

Level 2 143 × 81 145 × 65 127 

Level 3 72 × 41 73 × 33 64 

Fig. 6. The profile of the upper wall and its effect on freestream velocity for pres- 

sure gradient flat plate test cases, compared with experiment [44] . 

grid level are listed in Table 2 . As evident from Fig. 7 , the “Level 

0” and “Level 1” grids give almost overlapping results in terms of 

the coefficient of friction along the flat plate for T3A, SK, and T3C5 

test cases. As such, “Level 1” grid is used for validation purposes. 

The distance of the first grid point in the wall-normal direction 

for “Level 1” grid is chosen such that a y + value of less than one 

is maintained over the turbulent region on the flat plate. The same 

grid (“Level 1”) is used for T3A, T3B and T3A- test cases and the 

grid has the first grid point at a distance of 10 −5 m in the wall- 

normal direction. For the SK test case, the first wall-normal grid 

point is situated at a distance of 2 . 5 × 10 −6 m from the plate. For 

all the pressure gradient flat plate test cases, the first grid point 

is located at a wall-normal distance of 2 × 10 −5 m from the plate. 

Further, in all the flat plate test cases, the grid is clustered near 

the leading edge with the first grid point 10 −3 m away from the 

leading edge in the streamwise direction. 

3.3. Results 

The inlet turbulence intensity and viscosity ratio used in the 

current study are similar to those used in Menter et al. [27] . The 

procedure adopted in determining the used values of turbulent in- 

tensity and viscosity ratio at inlet is as described in Langtry and 

Menter [19] , wherein the inlet turbulence intensity was fixed and, 

via trial and error, the viscosity ratio was adjusted to match the 

experimentally measured turbulence levels [44] at various down- 

stream locations. Fig. 8 shows the comparison of the variation of 

free-stream turbulence intensity (Tu in percentage) with experi- 

mental data [44] along the length of a plate for the flat plate test 

cases. Since similar experimental data for the SK test case is not 

available, the same is not included in Fig. 8 . Although these re- 

sults, marked as simulation, are shown for the k γ model, identical 

results were obtained for γ model. 

Fig. 7. Grid-convergence study for flat plate test cases. 
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Fig. 8. Free-stream turbulence intensity versus local Reynolds number based on the length of plate for flat plate test cases. 

Fig. 9. Skin friction coefficient for flat plate test cases [44] . 

Fig. 9 compares experimental data [44] for the local skin- 

friction coefficient along the length of the plate with results ob- 

tained using the one-equation γ transition model (dash-dot line) 

and zero-equation k γ model (solid line), for flat plate test cases 

without pressure gradient and with pressure gradient. It can be 

observed from the skin friction plot for all the flat plate test cases 

that although the new zero-equation k γ model predicts a reason- 

ably accurate transition similar to the one-equation γ model, the 

length of transition in most of the test cases is short. As seen 

in the results for the T3A test case, shown in Fig. 9 a, the zero- 

equation k γ model produces sharper transition as compared to the 

one-equation γ transition model. Similar results can also be seen 
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Fig. 10. (a) Velocity and (b) turbulent kinetic energy profiles for T3A test case at 

laminar (red), transition (blue), and fully turbulent region (black); k γ model ( ), 

γ model ( ), SST2003 model ( ), and experimental data ( �) [44] . (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the electronic version of this article.) 

in the plot for the test case T3B ( Fig. 9 b) and the test case with 

favorable pressure gradient, T3C5 ( Fig. 9 ). It is worthwhile to note 

that the one-equation γ transition model, itself, predicts sharper 

transition compared to the two-equation γ − Re θ model [19] as re- 

ported in Menter et al. [27] , and the new zero-equation transition 

model predicts transition that is sharper than that predicted by the 

one-equation transition model. Further, the results from the alge- 

braic BC transition model in Cakmakcioglu et al. [31] also show a 

sharp transition for the same flat plate test cases. It seems, as such, 

that with reduction in the number of equations used for the pre- 

diction of transition, the model tends to produce a sharper transi- 

tion. Hence, it is difficult to control the length of transition in local 

correlation-based zero-equation transition model. 

For the low turbulence intensity test cases, T3A- and SK test 

cases shown in Fig. 9 c and d respectively, the zero-equation k γ
transition model predicts a delayed onset of transition as com- 

pared the one-equation γ transition model. 

Fig. 10 a and b compare the velocity profile and turbulent ki- 

netic energy profile, respectively, predicted by the k γ and γ tran- 

sition models with the experimental data [44] for the T3A test case 

at three different locations on the plate. The first location is in 

the laminar region (red) at Re x = 10 5 , the second location is ex- 

perimental transition region (blue) at Re x = 2 × 10 5 and the third 

location is in the fully turbulent region (black) at Re x = 4 . 9 × 10 5 . 

In the fully turbulent region, results using the SST2003 (fully tur- 

bulent flow) model are also shown for comparison. The velocity 

profile predicted by k γ and γ model overlaps each other in all 

regions. However, small deviation from the experimental data for 

both models can be seen in the post-transition region. As seen in 

Fig. 10 b, the turbulent kinetic energy profile predicted by the both 

k γ and γ transition model overlap in all but the laminar region, 

where both profile still shows the same trend. For both transi- 

tion models, in the laminar region, turbulent kinetic energy decays 

quickly to negligible value as opposed to the significant turbulent 

kinetic energy detected in the experiment. Here, one should note 

that both the k γ and γ models are not designed to predict the full 

physics of the boundary layer in the laminar region. The turbulent 

kinetic energy profiles predicted by both the transition models in 

turbulent region, although not comparing very well with the ex- 

perimental data in the inner part of the boundary layer ( y / δ < 0.1), 

reproduces the behaviour of the SST2003 turbulence model for 

the most part of the boundary layer at this location. Thus, the k γ
model is able to suppress the turbulent kinetic energy in the lam- 

inar region which produces the correct Blasius velocity profile and 

mimics the behaviour of the one-equation γ transition model in 

the fully turbulent flow and transition region. 

Table 3 

Computation time for flat plate test cases. 

Case k γ Model (Min.) γ model (Min.) k γ / γ

T3A 13.36 14.34 0.93 

T3B 19.45 20.31 0.95 

T3A- 09.85 09.22 1.06 

S&K 26.51 25.46 1.04 

T3C1 10.98 11.63 0.94 

T3C2 14.46 15.81 0.91 

T3C3 19.35 21.63 0.89 

T3C5 10.18 08.92 1.14 

3.4. Computational effort 

To quantify the difference in the computational effort required 

between k γ and γ model, we measured the total memory used 

by the processors, and the time it takes to drive the L2-norm of 

density residual to 10 −11 . Simulations were performed with the 

FEST3D code on a machine with Intel(R) Xeon(R) Gold 6142 pro- 

cessor with 64 CPUs. 

Fig. 11 shows the convergence history of density residual with 

respect to the CPU time for the flat plate test cases. As can be ob- 

served from the plots, both the k γ and γ models show very similar 

convergence. Since the behaviour of the two models are different, 

instead of using local time step, which is a function of the solu- 

tion, a global time step of 10 −4 s for zero pressure gradient test 

cases and 2 × 10 −4 s for pressure gradient test cases was used for 

the study. 

Table 3 shows the computation times for the k γ and the γ
model for the flat plate test cases. It can be observed from the 

table that whereas the k γ model requires less time compared to γ
model for a majority of the test cases, the reverse is observed for 

T3A-, SK, and T3C5 test cases. It can possibly be attributed to the 

fact that whereas the predicted location of transition for the two 

models are very similar for the other cases, the k γ model predicts 

transition further downstream compared to the γ model for the 

T3A-, SK, and T3C5 test cases that also results in a delay in the on- 

set of transition as can be observed in Fig. 11 c. A delayed transition 

indicates that the solution would require more (overall) iterations 

(compared to an early transition) for the development of the tur- 

bulent boundary layer, which is expected to result in an increase 

in computational time. 

For all these test cases, we observe ∼3% computational mem- 

ory savings. A point to note is that the savings in memory (and 

computational time) reported herein are with matrix-free LU-SGS 

time-integration method and are expected to be higher for a fully 

implicit time-integration method. 

4. Applications 

4.1. Aerospatiale A-airfoil 

The Aerospatiale A-airfoil has been used for validation of CFD 

codes over the last two decades. It was designed at Aerospatiale 

and tested in the ONERA (Office National d’Etudes et de Recherches 

Aérospatiales) F1 and F2 wind tunnels. The data obtained in the 

F1 wind tunnel is more appropriate for comparison with the nu- 

merical predictions of the skin friction coefficient ( C f ) and pressure 

coefficient ( C p ); however, due to the unavailability of the original 

data file and reference, the experimental data are digitized from 

the work of W. Hassen [45] . 

For computations presented here, an O-grid similar to the one 

used in Hasse [45] , with 1025 grid points along the airfoil and 257 

grid points in the wall-normal direction, is used. Fig. 12 shows the 

O-grid (every 5 th grid point in both directions is shown for clarity), 
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Fig. 11. Residual convergence history. 

Fig. 12. The O-grid used for the Aerospatiale A-airfoil test case; showing every 5 th 

point in both directions. 

with axes normalized with respect to chord length (C), used for the 

computation. 

For flow conditions of 2.1 million Reynolds number, 0.15 Mach 

number, angle of attack 13.3 degrees and freestream turbulence in- 

tensity of 0.05%, the laminar boundary layer over the suction side 

of the airfoil separates at 12% of the chord length and reattaches 

as a turbulent boundary layer in the experiment. As shown in the 

surface pressure coefficient ( Fig. 13 a) and skin friction coefficient 

( Fig. 13 b) plots, the predictions of the k γ model practically coin- 

cides with that of the one-equation γ model, and both the tran- 

sition models compare very well with the experimental data. The 

flow separation on the upper surface of the airfoil, indicated by the 

negative value of C f (12% of the chord length), is also captured by 

both the transition models, as evident from the plot of skin-friction 

Fig. 13. (a) Pressure coefficient over the Aerospatiale A-airfoil and (b) coefficient of 

friction on the suction side of Aerospatiale A-airfoil. 

in Fig. 13 b. The small laminar region before the separation bubble 

has a pronounced effect on the surface shear-stress after the tran- 

sition as evident from the difference between the predicted coef- 

ficient of friction by either of the transition models and that from 

the (fully turbulent) SST2003 model; the C f predictions of the tran- 

sition model also compare better with experimental data than the 

predictions of the (fully turbulent) SST2003 model. 

The integrated values of lift ( C l ) and drag ( C d ) coefficients, com- 

pared for different grid sizes (h) in Fig. 14 , show that the values 

predicted by the k γ transition model (and also the one-equation γ
model) match the experimental data much better than those pre- 

dicted by the (fully turbulent) SST2003 model. 

4.2. E387 airfoil 

McGhee et al. [46] obtained experimental results for flow over 

Eppler 387 airfoil in the Langley Low-Turbulence Pressure Tunnel 

9 
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Fig. 14. Comparison of (a) coefficient of drag and (b) coefficient of lift predictions with different grid resolution for Aerospatiale A-airfoil [45] . 

Fig. 15. O-grid used for the E387 airfoil test case; showing every 5 th point in both 

directions. 

(LTPT) at Reynolds number of 0.2 million and average freestream 

turbulence intensity of 0.09%. For the computations, an O-type grid 

is used, as shown in Fig. 15 . The computational domain consists of 

705 grid points along the airfoil, and 180 in the wall-normal di- 

rection. The distance of the first (O-type) grid line from the airfoil 

surface is 10 −5 m, which keeps the y + in the turbulent region be- 

low 1. 

The computations for the current test case were performed 

with k γ transition model, γ transition model, and SST2003 tur- 

bulence model. Fig. 16 shows the comparison of these models in 

terms of drag and lift predictions. As can be seen, both the transi- 

tion models predict more accurate drag values as compared to the 

(fully turbulent) SST2003 model. For angles of attack less than the 

stall value, the lift prediction for k γ transition model matches with 

the one equation γ transition model. In the stall region though, the 

results obtained with k γ model are closer, at least for the predicted 

lift values, to the (fully turbulent) SST2003 model, as compared to 

the one-equation γ transition model. The reason for the discrep- 

ancy is not obvious. 

In Fig. 17 , the pressure coefficient at four different angles of at- 

tack: −2 ◦, 0 ◦, 2 ◦ and 4 ◦, obtained with k γ model, is compared with 

the one-equation γ transition model, (fully turbulent) SST2003 

model and experimental data [46] . It can be observed from the 

experimental C P data that there is a flow separation on the upper 

Fig. 16. Comparison of (a) lift coefficient and (b) drag polar for the E387 airfoil test case [46] . 
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Fig. 17. Pressure coefficient for E387 airfoil test case [46] . 

Fig. 18. Flow-separation prediction using k γ model and γ model for flow past E387 airfoil test case [46] . 

surface of the airfoil, which is also captured by both the k γ and the 

one-equation γ transition models; the fully turbulent flow simula- 

tion with the SST2003 model, however, does not capture this. 

The flow past the Eppler 387 airfoil at zero angle of attack sep- 

arates in the laminar regime and reattaches as a fully turbulent 

boundary layer. Fig. 18 shows the region of flow separation from 

the simulations with k γ and γ transition models. The contours of 

turbulent Reynolds number ( R T ) show that the flow is laminar up- 

stream of separation and reattaches as fully turbulent. The filled 

triangle and circle on the airfoil surface mark the laminar separa- 

tion and turbulent reattachment points from the experiment, re- 

spectively. As can be observed from the streamlines plotted near 
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Fig. 19. Grid used for the DLR-F5 test case. 

the airfoil surface, the separation bubble obtained from the simu- 

lation with k γ model shows a close match with experimental data 

in terms of separation length. 

4.3. DLR-F5 wing 

The three-dimensional DLR-F5 test case consists of a 20 ◦ swept 

wing with 0.65 m span and an average chord length of 0.15 m. 

The wing was designed with a large fillet at the root section to 

avoid leading-edge vortex formation. The experiments with this 

wing were performed by Sobieczky et al. [47] in the DLR wind 

tunnel, where the wing was mounted on the tunnel’s side-wall. 

The specific experiment simulated in this work was conducted at 

a free-stream Mach number of 0.82, turbulence intensity of 0.35%, 

Reynolds number (based on average chord length) of 1.5 million 

and angle of attack of 2 degrees. 

For the simulations, the wing surface is meshed with 449 grid 

points in the spanwise direction and 513 grid points along the 

airfoil. A cuboidal outer domain of 1 m length is used. The wing 

is mounted on one side, which, along with the wing surface, is 

treated as a no-slip adiabatic wall while the rest of the domain 

boundary is treated with far-field boundary condition. The first 

layer of cells is at a distance of 10 −7 m from the wall, which re- 

sults in maximum y + of 0.32 over the turbulent region. Fig. 19 

shows the mesh on the wing surface and the wall on which it is 

mounted. 

The distribution of the pressure coefficient with chord length 

at various wing-span locations is shown in Fig. 20 . At the section 

1.67% from the root of the wing, both of the transition models and 

turbulence model predict similar results, as shown in Fig. 20 a. On 

the other hand, at the sections 33.854%, 65%, and 80% away from 

the root of the wing, the fully turbulent flow model (SST2003) 

shows early shock prediction. The k γ and γ models predict sim- 

ilar pressure coefficient distribution at wing span locations greater 

than 50% as seen in the Fig. 20 c and d. However, at the wing span 

location at 33.84% (more correctly between 10 and 50% approxi- 

mately) from the root, the k γ model predicts an early transition 

as compared to the γ transition model, which can be observed in 

Fig. 20 b. 

Fig. 21 a–c show the surface contours of the coefficient of fric- 

tion for k γ , γ , and SST2003 model. The sketch of surface flow 

features obtained from the experiment, shown in Fig. 21 d, is re- 

produced from [47] . The γ model predicts a separation induced 

Fig. 20. Comparison of pressure coefficient at various wing span locations (in per- 

centage from root location) obtained for k γ model, γ model, and SST2003 model 

with experimental data [47] . 

Table 4 

Computation time for the different test cases in Section 4 . 

Case Angle of attack k γ Model (hr) γ model (hr) k γ / γ

AA 13.3 ◦ 6.75 7.13 0.94 

E387 −1 ◦ 0.55 0.60 0.93 

1 ◦ 0.54 0.57 0.94 

3 ◦ 0.56 0.59 0.94 

5 ◦ 0.56 0.60 0.94 

DLR-F5 2 2 ◦ 128.49 149.05 0.86 

2 local time step is used in this case. 

transition over the whole span of the wing, as seen in Fig. 21 b, 

whereas the k γ model predicts separation induced transition for 

the outer half of the wing span and natural transition for the in- 

ner half, as seen in Fig. 21 a. A point to note is that the correlation 

used, Eq. (29) , does not include effects of crossflow. By introduc- 

ing crossflow effects [57,58] , the γ and k γ models are expected to 

produce transition prediction, which compare better with experi- 

mentally observed behavior in the inner-half of the wing span. 

Similar to the flat plate validation cases, a computation time 

study was conducted for the test cases in Section 4 on the same 

machine. The study was conducted with a global time step of 

10 −5 s for Aerospatial-A airfoil and 5 × 10 −5 s for E387 airfoil. Due 

to a limit of the order of 10 −12 s on the maximum permissible 

global time step, the computational time study for the DLR-F5 test 

was conducted with local time-stepping. As reported in Table 4 , 

the k γ model shows at least 6% savings in computation time over 

the γ model. 
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Fig. 21. Comparison of wall shear stress on the surface of DLR-F5 wing [47] . 

5. Conclusion 

A zero-equation local correlation-based transition model, 

coined as the k γ model, has been presented in this work. The 

model derives from a one-equation transition model that solves 

the transport equation of intermittency and blends this with a 

two-equation turbulence model through the introduction of a new 

variable: k γ . This process results in the modification of the trans- 

port equation of k with the addition of new source terms, which 

are then modeled suitably. As the new model avoids an additional 

transport equation for intermittency, it can be easily implemented 

in existing RANS codes with reduced computational memory re- 

quirement (compared to one-equation or two-equation transition 

models), which makes it an attractive option. 

The model is validated against a series of standard flat plate - 

with and without pressure gradient - and airfoil test cases from 

the literature. The new model is capable of predicting both natural 

and by-pass transition, and also captures laminar flow separation 

in airfoils and its reattachment as turbulent boundary layers. Fur- 

ther, the k γ model produces results similar to the one-equation γ
model (albeit with a sharper transition) and provides faster conver- 

gence in cases where the predicted transition locations are sim- 

ilar. Comparison of skin-friction contours and pressure-coefficient 

distribution (at different spanwise locations) predicted by the k γ
model with experimental data for transonic flow past a DLR-F5 

swept wing at 2 degrees angle of attack indicate that the k γ model 

predicts the flow transition with improved accuracy as one moves 

away from the wing root. 

In summary, it can be said that a novel framework for the 

construction of non-algebraic local correlation-based zero-equation 

transition models is presented in this work that can be computa- 

tionally cheaper and easier to implement compared to existing 1- 

eqn / 2-eqn models and paves the way for subsequent effort s in 

this direction. 
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Appendix A. Derivation of source and diffusion terms 

Grouping production, destruction and diffusion terms in Eq. (9) , 

we can write: 

∂(ρk γ ) 

∂t 
+ 

∂(u j ρk γ ) 

∂x j 
= P k γ + P k γ

lim 
− E k γ + D k γ (A.1) 

Production term The production term in Eq. (A.1) is given by 

P k γ = γ P k + kP γ (A.2) 

= γ ( γμt S
) + k 
(
F length ρSγ (1 − γ ) F onset 

)
(A.3) 

Substituting the definition of μt from Eq. (7) 

P k γ = γ
γ ρa 1 k 

max (a 1 ω, S F 2 ) 
S
 + kF length ρSγ ( 1 − γ ) F onset (A.4) 

Grouping k and γ terms together to form the k γ variable we get, 

P k γ = 

[
γ ρa 1 k γ

max (a 1 ω, S F 2 ) 
S


]
+ 

[
F length ρSk γ ( 1 − γ ) F onset 

]
(A.5) 

The first term in production equation looks similar to the produc- 

tion term of k equation, and we term it P (k ) 
k γ

; the second term is the 

contribution of the intermittency equation, and we term it P 
(γ ) 
k γ

. 

Thus, 

P k γ = P (k ) 
k γ

+ P 
(γ ) 
k γ

(A.6) 

where, 

P (k ) 
k γ

= 
γ ρa 1 k γ

max (a 1 ω, S F 2 ) 
S
 = γ ˜ μt S
 (A.7) 

where, 

˜ μt = 
ρa 1 k γ

max (a 1 ω, S F 2 ) 
(A.8) 

and 

P 
(γ ) 
k γ

= F length ρS ( 1 − γ ) F onset k γ (A.9) 

A similar derivation yields P lim 
k γ

= γ P lim 
k 

for the additional produc- 

tion term in the k-equation. 

Destruction term The destruction term in Eq. (A.1) is given by 

E k γ = γ E k + kE γ (A.10) 

13 



J.P.S. Sandhu and S. Ghosh Computers and Fluids 214 (2021) 104758 

= γ [ max (γ , 0 . 1) β∗ρωk ] + k [ C a 2 ρ
γ F turb ( C e 2 γ − 1 ) ] (A.11) 

Again, similar to the production term formulation, grouping k and 

γ terms together to form the k γ variable, we get 

E k γ = 
[
max (γ , 0 . 1) β∗ρωk γ

]
+ 

[
C a 2 ρ
F turb ( C e 2 γ − 1 ) k γ

]
(A.12) 

The first term in destruction equation looks similar to the destruc- 

tion term of k equation, and we term it E (k ) 
k γ

; the second term is 

the contribution of the intermittency equation, and we term it E 
γ
k γ

. 

Thus, 

E k γ = E (k ) 
k γ

+ E 
(γ ) 
k γ

(A.13) 

where, 

E (k ) 
k γ

= max (γ , 0 . 1) β∗ρωk γ (A.14) 

and 

E 
(γ ) 
k γ

= C a 2 ρ
F turb ( C e 2 γ − 1 ) k γ (A.15) 

Diffusion term The diffusion term in Eq. (A.1) is given by 

D k γ = γ

(
∂ 

∂x j 

[
( μ + σk μt ) 

∂k 

∂x j 

])
+ k 

(
∂ 

∂x j 

[(
μ + σγ μt 

) ∂γ

∂x j 

])

(A.16) 

Here the following simplifying assumption is made: 

σγ = σk 

and we also define an effective viscosity 

μe f f = μ + σk ̃  μt 

The diffusion term is then written as 

D k γ = γ

(
∂ 

∂x j 

[
μe f f 

∂k 

∂x j 

])
+ k 

(
∂ 

∂x j 

[
μe f f 

∂γ

∂x j 

])
(A.17) 

Using simple product rule of differentiation, Eq. (A.17) is written 

as 

D k γ = 
∂ 

∂x j 

[
μe f f γ

∂k 

∂x j 

]
− μe f f 

∂k 

∂x j 

∂γ

∂x j 

+ 
∂ 

∂x j 

[
μe f f k 

∂γ

∂x j 

]
− μe f f 

∂γ

∂x j 

∂k 

∂x j 
(A.18) 

Grouping k and γ terms together to form k γ variable, we get 

D k γ = 
∂ 

∂x j 

[
μe f f 

∂k γ
∂x j 

]
− 2 μe f f 

∂k 

∂x j 

∂γ

∂x j 
(A.19) 

The first term in the diffusion equation looks similar to the dif- 

fusion term of k equation, and we term it D 
(k ) 
k γ

. Although the sec- 

ond term does not have contribution solely from the intermittency 

equation, we still term it D 
(γ ) 
k γ

. Thus, 

D k γ = D 
(k ) 
k γ

+ D 
(γ ) 
k γ

(A.20) 

where, 

D 
(k ) 
k γ

= 
∂ 

∂x j 

[
μe f f 

∂k γ
∂x j 

]
(A.21) 

and 

D 
(γ ) 
k γ

= −2 μe f f 
∂k 

∂x j 

∂γ

∂x j 
(A.22) 

Appendix B. ˜ γ function 

As the estimated intermittency, ˜ γ , is a function of R T , it is 

possible that it affects the transition location based on the flow 

initialization used. As the model presented in the paper is cali- 

brated for freestream initialization, using a fully turbulent or lam- 

inar flow initialization may change the transition location, espe- 

cially for the high-Reynolds number and low-turbulence intensity 

cases. Fig. B.22 shows the effect of using different initial conditions 

Fig. B.22. The effect of different initial conditions on the prediction of transition local by k γ model. 
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Fig. B.23. Time-evolution of R T with different initial conditions for (a) T3A flat plate test case at x = 0 . 33 m and y = 4 × 10 −5 m. and (b) SK flat plate test case at x = 0 . 5928 m 

and y = 4 × 10 −5 m. 

on the transition location for all the flat plate validation test cases 

presented in this study. All the flat plate test cases with pressure 

gradient (T3C series), T3A, and T3B test cases show no effect of ini- 

tial condition on the transition location. However, the T3A- and SK 

test cases, which are both high Reynolds number and low turbu- 

lence intensity cases, show significant early transition when a fully 

turbulent or laminar boundary layer is used as an initial condition. 

This is an apparent deficiency in the proposed model, which arises 

due to the use of R T in Eq. (16) to model intermittency. 

Fig. B.23 shows the evolution of R T for high-turbulence in- 

tensity (T3A) and low-turbulence intensity (SK) test cases with 

non-dimensional time ( t ′ ) that is obtained by normalizing t 

with ( L ref / a ref ). Fig. B.23 a shows the time-evolution of R T with 

freestream, laminar boundary layer, and fully turbulent boundary 

layer as initial conditions, at a probe location of x = 0 . 33 m and 

y = 4 × 10 −5 m for the T3A flat plate test case. As seen from the 

plot, the order of the initial R T is the same with different ini- 

tial conditions and produces similar (steady state) behavior in the 

approximated intermittency ˜ γ . In contrast, for the SK test case, 

shown in Fig. B.23 b, the initial values of R T , at a probe location of 

x = 0 . 5928 m and y = 4 × 10 −5 m, are of different order for differ- 

ent initial conditions, producing completely different (steady state) 

behavior of approximated intermittency ( ̃  γ ) with different initial 

conditions. 
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