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1 | INTRODUCTION

In the ordinary interpolation formula, a trigonometric sum of nth order is provided by the values of a function at 2n + 1
evenly sampled points over the interval [—z, z]. We know that the convergence is not sure when the sampling points
are indefinitely increased even for continuous functions. Jackson! proposed an interpolation formula which converges
uniformly for every continuous function. This interpolation formula does not provide minimal errors for some periodic
functions. Thus, we propose to modify Jackson trigonometric interpolation® by extending the class of the basic functions
with different positive exponents. This is done by defining a family of nodal mappings linked to a uniform partition of the
interval and assigning positive real exponents to each member of this family. In this way, we get a sequence of generalized
Jackson interpolants based on the partition points of the interval. For a prescribed 2z-periodic Holder continuous func-
tion, a bound for the uniform error with respect to its generalized Jackson interpolant is computed. In particular, if we
choose the positive exponents in a suitable manner, the uniform error will be bounded, and the sequence of generalized
Jackson interpolants will converge to the Holder continuous function.

The content of this manuscript is described in the following order. In Section 2, we generalize the Jackson interpolation
formula. It is shown that this formula gives lower errors for some periodic functions. Then, we deduce the uniform error
bound for 2z-periodic Holder continuous function. Finally, in the same section, convergence and stability results are
proved for the new interpolant. We review some introductory results in Section 3. In Section 4, we consider a family of
fractal interpolants associated with the generalized Jackson approximants. We derive an error bound for the fractal case
as well, proving the convergence for suitable elections of a fractal parameter.

2 | NEWTYPE OF FOURIER INTERPOLANT

Jackson! used n-nodal basis functions and proposed the following interpolatory formula to a 2z-periodic function f: given
n-points x; in the interval [—xz, z] such that x;;; —x; = 2z/n and i € N,, where N, is the first n natural numbers,
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We extend the kernels (see, for instance, the works of Jackson? and Szabados?®) with the help of positive exponents ; as
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for x # x;,

Qnip(0) =

and
Qnip (%) = 0¥,

where f; > 0,i € N,.. Let § = (f;, 85, ..., ) With f; > f,... > p,. Based on the above generalized kernels, we suggest
the following approximation to f:

Tnp(£)00) = Knp() Y £ (5) Qi (0, -
i=1
and
K500 = Y Quip®). @)
i=1

The selection of the exponential parameters in the above trigonometric expression (2) provides a greater flexibility for
approximation of data sets, generating various types of periodic functions including the Jackson trigonometric interpo-
lation formula. In particular, the use of variant exponents for different kernel functions allows greater flexibility to treat
the data.

Several types of different trigonometric approximations can be found in other works.*3

Proposition 1. The proposed approximation formula (2) interpolates f at grid points.

Proof. First, we will show that
Quip (%)) = néy, (4)

where 6; = 1if i = j, and zero otherwise. As per our construction, Qn; 4 (x;) = n’t whenever i = j. For the case i # j,
consider the natural number p such thatj =i+ p (ori =j + p), then

2
Xj —Xj = Lp,
n
and thus,
. Xi — Xj .
sin (n ) = sin(zp) = 0,

and hence, Qy, 4(x;) = 0. Consequently,
-1 _ — b
Ko pej) ™" = Qujp,(x;) = n™,

and, forallj=1,2, ...,n,

Lup()) = Knp(6) D ) Quig () = 70 f(x)nPs = £ (x;).

i=1
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TABLE1 The pointwise approximation errors of various periodic continuous function for
the classical Jackson formula and our formula with different selections of n and g;

Value of 2z-periodic function Jackson (;=2) f;=25 p;=3 p;i=4

n=3 V/1sin(2)| + 2+/| cos(2)| 0.2976 0.2850 0.2647 0.2110
n=10 2sin®(—1.5) + 3cos?(—1.5) 1.0989 0.8293  0.6846 0.5135
n=10 log (2 + cos (g)) 0.0267 0.0205 0.0167 0.0135
n=10 min(sin(1), cos(1)) 0.2891 0.2268  0.1989 0.1882
n=12 sin (%”) 0.0574 0.0436  0.0405 0.0264
Remark 1. 1t is worth to note that for natural exponents ; € N,i = 1,2, ..., n, the modulus is not required for the
nodal basis Qi ,, and for all ; = 2, the proposed generalization (2) reduces to the original Jackson idea due to the
following:
. X;—X 2
sin (”T)
La( f)x) = —Zf(xl ——. (5)
. X:—X
i=1 sin (— >
2
since
2
. X:—X
n | sin <n7>
= nz‘ (6)

; sin (xz_x)

Now, we want to deduce the uniform error bound between a 2z-periodic Holder continuous function, and its gen-
eralized interpolant. In our computation, we need the following propositions that are readily available in the work of
Navascués et al.® Table 1 collects the errors committed in several trigonometric approximations for different exponents
and values of n.

Proposition 2. Let f > 0,and y € R. Then forallm =1,2, ...,

: B
sm'my <1 @
msin y
Proposition 3. Let y € [0, ’21], then
. 2
siny > ;y ®

Let Lip,d = {f € C(D) : |f(0) = f)| S Alx—y|%, Vx,y € I}.
Theorem 1. Let f € Lipyd, where 0 < d < 1. Then, for f,, > d+1

17 =1 Dlle <K(E)(5)" (14204 5=l 55 ).

Proof. At first, we calculate the pointwise approximation error for the proposed method as

Enp()X) 1= Inp( ) = f(X) = Kn,/i‘(x)z (f (i) = f(X)) Qniip, ().
i=1

—n T

Assume that u; € [ ] Substituting x; = x + 2u;, we have

s1n(nul)
sin(u;)

|En s )(X)] <Knﬁ<x>2 £ G+ 2u) = () ©)

The numerator and denominator of the right side of (9) are multiplied by nf+.
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Let vy be the smallest of the numbers |u;], v; the second, and continuing similarly (see the work of Jackson2(P#59)
using f € Lipgd, (9) reduces to

= i ﬂiﬂ
sin(ny;
|Enp()0)] < Knpo) Y nPer K200 sin(aw) o)
i=0 nsin(v;)
where
ooy 2D 1 (11)
2n 2n 2
fori € N, U {0}. From Proposition 2 for i = 0, 1, we obtain
sin(nv;) |* .
nsin(v;)

It can be verified easily that, for remaining values (i > 2), after using the left inequality of (11), we get
. v .
nsin(wy) > n 2t > i,
T

where we used Proposition 3 to obtain the first inequality. Therefore, fori > 2,

b 1 b 1 b
> <nsin(vi)> = <7) : (13)

Collecting the inequalities from (12) for i = 0,1 and (13) fori > 2, we get

sin(nv;)
nsin(v;)

n-1
B
st <ot (4ot 24(1)"
i=2

1

2dpd ~ 2dp 2dpdifin

d d n—1 . d

T (2,4 (l + 1)

ngdn/’IKn,,,(x)< + o+ Z nd—>
i=2

d nl.g
1
< Vi /2 d "+
<Kn 1K"’ﬁ(x)_nd <1 + 2%+ igz ) (14)

where, in the second step, we have applied (11) and, for the last step, the inequality (i+1)¢ < (i%+1), where0 <d < 1
is applied. For the functions ﬁ and xﬁ%’ we will use the lower Riemann sums in [1, +c0), where we have considered
unit step. Thus, the last two summands in the above expression are evaluated as

n-1

o 1 </ dx 1
& ip=d = 1xﬂn—d Pn—(d+1)

L

and

7
L

T
F[=
IA
,_.\8
g
|

=
S
| =
—

Adapting these bounds, we collect

d
b z d 1 1
|Enp( )X)| < Kn Kn,ﬂ(x)(n) <1+2 +ﬂn—(d+1)+ﬂn—1>’ 15)
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FIGURE1 Graph of interpolated
function for different values of g;. A,
Original function; B, Jackson interpolated
function; C, Generalized Jackson
interpolated function for each g; = 3; D,
Generalized Jackson interpolated function

foreach g, =4
if §,, > d + 1. To estimate an upper bound for K, 4(x), we consider
& sin(avy) [P |sinavg) |
Kyt = Y | L v
par sin(v;) sin(vg)
and
. 2nvy
sin nyg >
Consequently,
2nv, |7 A
Knp™ > |20 = (22)7 16)
A% T

which gives

b
K, 5(x) < <§> y

Applying (16) in (15), the uniform approximation error bound for the procedure is established as

A E A d 1 1
”f_l"’ﬁ(f)”wSK(ﬂ (E) <1+2 +ﬁn—(d+1)+ﬁn—1>' (17
O

The following example illustrates the proposed procedure.

Example: Let the function f(x) = 2sin’x + 3cos?x + /| sinx| be given over the interval [—z, ]. Figure 1A depicts
the graph of the function f on the interval [—z, z]. Consider a partition of [—x, ] with step length % The corresponding
interpolated function for Jackson interpolation is generated in Figure 1B. Using n = 10 and for each f; = 3, the gener-
alized interpolated function is generated in Figure 1C. Finally, with the same number of points of [-z, z] for §; = 4, the
interpolated function is depicted in Figure 1D.

Corollary 1. Let f be periodic and f € Lipgd. Then, for p, > r > (d + 1), the interpolating function I, z(f) is uni-

formly convergent to f whenever n approaches infinity. The order of convergence is O(n=%) and it can be noted that it is
independent of p.

In the concern for stability, first we review a result for the interpolant I,,(f) on a partition {x" }l.’il.lo

Definition 1. The interpolation I,,,(f) is said to be stable if, for given £ > 0, there exists § (depending on ¢) > 0 so
that max | £ ™| < 6 implies [|[In(llo < e.
SIsm
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Definition 2. For the interpolation I,,,(f), the Lebesgue constant is defined as

A =sup 3 161 (18)

i=1

where [ is the interval of definition and ¢;,i = 1, ..., m, are the associated nodal functions.
The next stability result can be recalled from the work of Hong.!?

Theorem 2. An interpolation is stable if and only if, for any Lebesgue constant sequence {A,,}, there exists a positive
real number B satisfying Ay, < B for any natural number m.

From the definition of nodal functions and using this result, we can culminate that I, 4 is stable as the associated
Lebesgue constants verify the following equality:

n
Anp= sup Kyp(x) ) Quip®) =1.
i=1

XE[—7x,7]

Hence, we obtain that the interpolation is stable.

In the work of Navascués et al,!! we proposed a way of computation of optimal exponents of nodal functions. The
procedure consists of taking half of the sampled data to perform the interpolation and using the rest as target points. The
exponent is chosen such that the mean square error of the fitting process reaches minimum.

3 | IFS THEORY AND a-FRACTAL FUNCTIONS

In this section, we review the concept of iterated function system (IFS) and the construction of fractal functions which
will be used in the sequel. Fractal interpolation function defined via IFS is a tool to approximate smooth and nonsmooth
functions generating from real-world data. More details can be read from the works of Barnsley'? and Navascués.!>4
Let X ¢ R",n € N and (X,dx) be a complete metric space with a metric dx. Let HX) = {A : A # @, and A is
compact in X}. The Hausdorff distance between A and B in H(X) is defined as h(A, B) = max{dx(A, B), dx(B,A)}, where
dx(A,B) = sgg ;g dx(x, ). The space (H(X), h) is called the space of fractals.!? Let {w; : X — X; i € Ny} be a collection
X

of continuous maps on X. Then, {X; w;, i € Ny} is called an IFS on X. The above IFS is called hyperbolic if the maps
w;, i € Ny are contractive, ie, dx(w;(x), wi(¥)) < |a;|dx(x,y),0 < |a;| < 1. For this hyperbolic IFS {X; w;, i € Ny}, the set
valued Hutchinson map W : H(X) — H(X) is defined as

N
WA) = 'U1 w;i(A).
i=
It can be checked easily that W is a contraction and a contractive factor is |a| = max{|a;| : i = 1,2, ...,N}. Thus,
Banach fixed point theorem ensures the existence of a unique fixed point G € H(X) such that G = W(G). This G is said to
be the attractor or the deterministic fractal of the corresponding IFS.
Now, we briefly describe a-fractal function stem from IFS. Consider the partition of I = [a,b] as A = {xg,X1, ..., XN}

satisfying a = xp < x; < ... < xy = b. Suppose the set of data points {(x;, y;),i € Ny U {0}} be given. Let I; = [x;_1, X;].
Consider N contractive homeomorphisms L; : I — I; such that

Li(xo) = Xi—1, Li(xn) = X;. (19)
Suppose K =Ix Rand F; : K — R are N continuous mappings such that
Fi(x07y0) = Yi—l’Fi(xN, YN) = Ji, |Fi(x’ Y) - Fi(x9y*)| < |al||y - y*|7 (20)

where (x, ), (x, y*) € K, |a;| < 1,i € Ny. Consider w; : £ — K as w;(x,y) = (Li(x), Fi(x, y)) V i € Ny. Let us recall the
principal theorem for the construction of FIFs.
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Theorem 3. Let C(I) = {f : I — R, fiscontinuous} be associated with the uniform norm ||g|l := sup{|g(x)| :
x € I}. Consider the subspace Cy, ,, (I) := {g € C(I) : g&(xo) = yo, §Xn) = yn}, which is a closed subspace of C(I).
Barnsley!? proved the following:

1. The IFS {K;w;,i = Ny} gives a unique attractor G which is the graph of a continuous real valued function f and
interpolates at the grid points.
2. The Read-Bajraktarevi¢ operator T : C, , (I) = Cy, , (I) defined by

(T9)(x) = F; (L' (x),goL;'(x)) , x € I;, i € Ny

determines f as its fixed point.

The function f obtained in Theorem 3 is said to be a FIF associated with {L;(x), Fi(x, y)}lii , and it is a unique implicit
function verifying
f) =F; (L7'(x), foL7'(x)) Vx € I, i € Ny. (21)
Until now, most of the researchers studied FIF from the IFS
Li(x) = aix + b;, Fi(x,y) = iy + qi(%), (22)
where a; € (-1, 1) is the IFS parameter, namely, vertical scale factor of the map w;, g¢; : I — R are continuous functions
obeying
qi(X0) = yi-1 — @Yo, qi(XN) = yi — aiYN
due to conditions (20). The vector a = (a1, @2, ..., an) € (—1,1)V is the corresponding vertical scaling factor.
Let f € C(I). Select a partition {a =Xy <x; < ... <xy = b} of [, and let q;(x) = foL;(x) — a;b(x), i € Ny, where bisa
continuous map satisfying b(xy) = fixo) and b(xy) = flxn).

Definition 3. For f € C(I), base function b, scale vector «, the IFS (21)-(22) determines a continuous function f*
and this f* is named as the a-fractal function corresponding to f.

According to (21) and (22), f* verifies the fixed point equation
[ 00 = f(0) + a(f* = b)oL'(x), x € I, i € Ny. (23)
The uniform distance between f* and f can be bounded as (see for instance the work of Navascués!®)

" = fllee < == e i, (24)

1- Ialoo

where |a|, = max{|q;|;i € Ny}.

Remark 2. The map f* is interpolatory.

Remark 3. Tt can be checked from the inequality (24) that, if @ = 0 or f = b, then f* = f.

4 | FRACTAL INTERPOLANTS OF JACKSON TYPE

In this section, to obtain the fractal analogue of the generalized Jackson interpolant, we will perturb the basis func-
tions Qy; 4, (x) with suitable IFS parameters such as base functions by, ; 5,(x), scale vector «, and partition of the interval as
delineated in Section 3. We define the generalized fractal Jackson trigonometric interpolation as

I )00) = Knp0) Y FOQLE, , (0. (25)
i=1

Using Remark 2 and (4), we obtain

Q5 () = Quip (%)) = n’i5;; forall j = 1,2, ..., n.
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Thus, expression (25) interpolates at the grid points.

Theorem 4. Let f € Lip,d, where 0 < d < 1. Then, for f, > d + 1,

-] <k(2)(5)" (12 s e ) +(E) e

]

where a is a suitable IFS parameter used for the construction of the fractal perturbation of Q, ;g in the interval [-z, x].

Proof. Consider the following triangle inequality:

LN <

1, = TupCH|| _ + s () = £l (26)

B
The bound for the second term was treated in Theorem 1. From (16), we have K, 3(x) < <§) , and this bound can
be applied for the error in the first term of (26) since

B30 = g 0] = [Kng) 1650 (@549 = Qnin9)

< Knp(0) Y, £ 0 [ Q21,00 = Qi )|
i=1

n

< Knpll flleo Y

i=1

< (ZY i/ lomax

2n 1<i<n

< ()" 1o 2= 1 Qni = b

1<<

(27)

) = Quig ()

nig, Qn,i,ﬂi”oo

where we employed (24) for the last step. by, ; 5, are the corresponding base functions required to construct the a-fractal
functions Q7 ; , . These functions may be selected such that

1Qn.i8, — briplloo < 1Qn,ipIlco-

Hence,

max ”inﬁ - nlﬁ”oo<maX ”inﬁ”oo_nﬂ’ <nh.
1<i<n 1<

Finally, collecting the preceding bound, (17) and (27) altogether in (26), we obtain the required error evaluation. [J

Remark 4. It can be noted that, in the process of nonsmooth generalization, to obtain more flexibility, one can define
the fractal version of generalized interpolant using different scale vector o’ for each nodal function Q, ;5 separately.

Figure 2 represents the graph of a fractal interpolant of the function f(x) = 2sin® x + 3cos® x + 1/| sin x|, on the interval
[—z, z]. The number of subintervals is 10, the scale vector is (0.14, —0.27, 0.1, —0.24, 0.05, —0.08, 0.1, —0.13, 0, 0.08) and

all the exponents f; are equal to 2.
o\ I

FIGURE 2 Graph of a fractal interpolant
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5 | CONVERGENCE AND STABILITY OF THE FRACTAL CASE

The convergence and stability of generalized Jackson interpolation process were checked in Section 2. The convergence
and stability of the generalized fractal Jackson trigonometric interpolant (25) are proven in the following.

Theorem 5. Let f be 2z periodic and f € Lipgd such that0 < d < 1. If , > r > (d + 1), and if we select the sequence
of IFS parameters a" as a" = O (n—(d“)), then the interpolating function Ignﬂ( f) is uniformly convergent to f whenever n
approaches infinity. The order of convergence is O(n~%) and, consequently, it is independent of .

Now, adapting similar computation that we used at the end of Theorem 4 ( take f = 1),

n
Aoy = sup Kup(0 ) |Qk; s ) = Qui (9 + Quip )|
XE[—7,7] i=1
n n
< sup Kn,ﬂ(x)<z Q, ﬂ_(x)_Qn,i,ﬂi(x)|)+ sup Ky p(3) Y |Qnig, (x)]
X€[—rm,x] i—1 . XE€[-rm,x] i1
n
< sup Kn,ﬂ(x)(Z Qz,i,ﬂ_(x)—Qn,i,ﬂ[(x)D + Ang
x€[—x,x] i1 !
<1 B ] oo
<14+ sup n"K,z(x)n
X€[—n,x] 1- |a|oo
T b |a|oo
<o (B) el
2 1— o]

As a result, one can check that if we choose the sequence of IFS parameter a" as " = O(n™!), then the interpolation
Ifl’"ﬂ( f)isstable forany g, > r> (d +1).

Let us study the fractal nodal basis
K ip, () = Knp(X)Qp ; 5 (). (28)

These functions are continuous as the denominator K;}}(x) is not null for every x € I due to (16). Let us look at the space
spanned by these mappings

n
Sn"’ﬂ = span (kz,i,ﬂi)

=1
For a partition of the interval such that

2r
Xiy1 —Xi = —,
n

let us define the bilinear form in C[—r, 7]
n n
(f*.8 = D f g () = ) £ (x)glx).
i=1 i=1
The mappings (k; . ﬂ»);;l are orthonormal with respect to this product and hence independent. Therefore,
dim (S,) = n.
Let us consider the functionals of point evaluation
Li(f)= [0
The systems {L,;} and {k7 ﬂ_} are biorthonormal since
Lai (K ) = K p G = Knp() QS ) = 6.

The next result is obvious from the definition of the interpolation I} ﬂ( .
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Lemmal. If f,g € C[—nx, n] agree at the nodes
f ) =g,
fori=1,2, ...,n, then Ifl"ﬁ(f) = If:‘ﬁ(g).
Proposition 4. The operator IZ, P Cl-r,n] — C[-r, z] is a projection, that is to say,

IzyﬂoIl‘;’,ﬂ = Il‘;’,ﬂ.

Proof. Forany f € C[—x, z], fagrees with I' ,(f) at the nodes. Thus, applying Lemma 1,

1D =12, (1(D).
and the result is achieved. O

Proposition 5. The function g € C[—x, z] is a fixed point ofIZﬂ ifandonly ifg € S;fﬂ.
Proof. Ifg € S/ ;, then

n
g= DAk,
i=1
Due to the orthogonality of k. e

for any j € Ny, and then g = I? ﬂ(g), in view of the definition of I} 5 The other implication is a direct consideration
from the definition of the interpolation. O

The Lebesgue constant of the partition is in this case

Az,ﬂz sup i

XE[—7,7] i=1

K (x)| :

The norm of the nth interpolation can be acquired considering that, due to the definition (25),

(N <1l sup ]En‘,
i=1

X€[-rm,x] =

Ky ] = A1 f o, (29)

and thus,

IZ,;;

o4
| <Az,

For f =1, we obtain the equality.
The Lebesgue constant can be viewed as a condition number with respect to the uniform norm of the interpolation,
relative to changes in function values, since due to (29),

LD =Ly D|| L <AL = Flleos

where fand f are the original and any perturbed function of f, respectively.
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This number measures as well the separation of the interpolant with respect to the closest function in S 5 If we denote
as f P the closest function to fin this space, and d; ﬂ( f) as the minimum distance from fto S P

lr = ol <7 - £

Fap= 10| s (1eas,) |- 72

| *] = (1) 00,

since f s € Sy P and thus, by Proposition 5, f; 5= I ﬂ( I ﬂ). Following the same theorem and the properties of the
modulus of continuity, we obtain a theorem of Jackson type for the spaces Sy p in the case a = 0.

Proposition 6. For f,, > d + 1, the distance of f € C[—x, ] to the space 52 s verifies the following inequality:

d
0 T
&) ,() <Kpa( %) .
where Kj g is determined by the values of f and f.

Proof. The result is a consequence of Theorem 1 since

d () < f = Tup( )] -

ACKNOWLEDGEMENTS

The Projects CUD_ID: 2018_02 of the Centro Universitario de la Defensa de Zaragoza supported partially this
research work.

ORCID
Maria Antonia Navascués'= https://orcid.org/0000-0003-4847-0493

REFERENCES

1. Jackson D. A formula of trigonometric interpolation. Rendiconti Circolo Matematico Palermo. 1914;37(1):371-375. https://doi.org/10.1007/
BF03014830
2. Jackson D. On the accuracy of trigonometric interpolation. Trans Am Math Soc. 1913;14:453-461.
Szabados J, Vértesi P. Interpolation of Functions. Singapore: World Scientific Publishing; 1990.
. Mishra LN. On Existence and Behavior of Solutions to Some Nonlinear Integral Equations With Applications [PhD thesis]. Assam, India:
National Institute of Technology; 2017.

5. Mishra LN, Mishra VN, Khatri K. Deepmala, on the trigonometric approximation of signals belonging to generalized weighted Lipschitz
WL, (®))(r > 1)— class by matrix (C"! .N,) operator of conjugate series of its Fourier series. Appl Math Comput. 2014;237:252-263.

6. Mishra VN. Some Problems on Approximations of Functions in Banach Spaces [PhD thesis]. Roorkee, India: Indian Institute of Technology
Roorkee; 2007.

7. Mishra VN, Mishra LN. Trigonometric approximation of signals (functions) in Lp(p < 1)—norm. Int J Contemp Math Sci. 2012;7(19):
909-918.

8. Mishra VN, Khatri K, Mishra LN. Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz
W/(L,, (1)), (r > 1)— class by Norlund-Euler (N, p,,)(E, q) operator of conjugate series of its Fourier series. J Class Anal. 2014;5(2):91-105.
https://doi.org/10.7153/jca-05-08

9. Navascués MA, Jha S, Chand AKB, Sebastidn MV. Fractal approximation of Jackson type for periodic phenomena. Fractals.
2018;26(5):1850079. https://doi.org/10.1142/S0218348X18500792

10. Hong HC. On the stability of interpolation. J Comp Math. 1983;1(1):34-44.

11. Navascués MA, Jha S, Chand AKB, Sebastidn MV. Generalized trigonometric interpolation. J Comput Appl Math. 2018;354:152-162.
https://doi.org/10.1016/j.cam.2018.08.003

12. Barnsley MF. Fractals Everywhere. Boston, MA: Academic Press Inc; 1988.

13. Navascués MA. Fractal trigonometric approximation. Electron Trans Num Anal. 2005;20:64-74.

14. Navascués MA, Chand AKB. Fundamental sets of fractal functions. Acta Appl Math. 2008;100(3):247-261. https://doi.org/10.1007/s10440-
007-9182-2

mow



12 of 12 NAVASCUES ET AL.
WILEY

AUTHOR BIOGRAPHIES

Maria Antonia Navascués is a professor of the Engineering and Architecture School of the
University of Zaragoza (Spain). She completed her doctorate at the same university. She has
been a visitor professor at several foreign universities. She leads two research groups, in the
University of Zaragoza and in the Indian Institute of Technology of Madras. Since November
2015 until March 2017, she was the secretary of the Real Sociedad Matematica Espafiola (Royal
Spanish Mathematical Society). Now, she is territorial delegate of the same society.

Sangita Jha defended her PhD thesis on May 14, 2019 and currently is working as an institute
postdoctoral fellow at Indian Institute of Technology Madras (IITM). She is working in frac-
tal interpolation and approximation. Her research interests are fractal theory, approximation,
and functional analysis. She has completed her PhD from the Department of Mathematics,
IITM, under the guidance of Dr A.K.B. Chand (II'TM) and Dr M.A. Navascués (University of
Zaragoza, Spain). She obtained her masters (MSc) from the Indian Institute of Technology
Guwahati with CGPA 8.71.

A. K.B. Chand received the Master in Science and Master in Philosophy in Mathematics from
Utkal University, Bhubaneswar, India, in 1996 and 1997, respectively. Then, he received his
PhD from IIT Kanpur in 2005. He worked as assistant professor in BITS-Pilani Goa campus
prior to his postdoctoral position at the University of Zaragoza, Spain, in 2007. Since 2008,
he has been working as a faculty member at IIT Madras, and currently, he is a professor.
His current research interests include fractal interpolation functions (FIFs)/surfaces, shape
preserving fractals, approximation by fractal functions, computer-aided geometric design,
wavelets, and fractal signal/image processing.

Maria Victoria Sebastian, PhD in Mathematics, Professor at the Centro Universitario de
la Defensa de Zaragoza (Academia General Militar), attached to the University of Zaragoza.
Research lines: Approximation and fitting of curves, fractal interpolation, chaos theory,
non-linear dynamics and processing and quantification of experimental signals (in particu-
lar electroencephalographic signals). Member of the University Institute of Mathematics and
Applications Research (IUMA) and of the research group “Mathematical Physics and Fractal
Geometry” (recognized by the Government of Aragén).

How to cite this article: Navascués MA, JhaS, Chand AKB, Sebastidn MV. A fractal class of generalized Jackson
interpolants. Comp and Math Methods. 2019;1:€1054. https://doi.org/10.1002/cmm4.1054




	A fractal class of generalized Jackson interpolants
	Abstract
	INTRODUCTION
	NEW TYPE OF FOURIER INTERPOLANT
	IFS THEORY AND -FRACTAL FUNCTIONS
	FRACTAL INTERPOLANTS OF JACKSON TYPE
	CONVERGENCE AND STABILITY OF THE FRACTAL CASE
	REFERENCES


