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Abstract

We demonstrate that the Navier-Stokes equation can beiantiaed under the
full infinite dimensional Galilean Conformal Algebra (GCGAuch that it reduces
to the usual Navier-Stokes equation in an inertial framee Tbvariantization is
possible only forincompressible flows, i.e when the divaogeof the velocity field
vanishes. Using the continuity equation, we can fix the fangation of pressure
and density under GCA uniquely. We also find that when all chahpotentials
vanish,cs, which denotes the speed of sound in an inertial frame camgowiith
the flow, must either be a fundamental constant or given mgesf microscopic
parameters. We will discuss how both could be possible. seade of chemical
potentials, we also find that the covariance under GCA irsghat either the vis-
cosity should vanish or the microscopic theory should hdeagth scale or a time
scale or both. We further find that the higher derivative ections to the Navier-
Stokes equation, can be covariantized, only if they areicgstl to certain possible
combinations in the inertial frame. We explicitly evaluatEpossible three deriva-
tive corrections. Finally, we argue that our analysis hih&t the parent relativistic
theory with relativistic conformal symmetry needs to beodefed before the con-
traction is taken to produce a sensible GCA invariant dycahimit.
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1 Introduction

A new non-relativistic extension of the AdS/CFT conjectiifgbecame possible when
it was shown [2, 8] that a non-relativistic conformal algeloould be obtained as a
parametric contraction of the relativistic conformal gooihis contraction retained the
same number of generators as the relativistic conformalmgrdét was also found out
by the authors of [8] that an inifinite-dimensional extensibthe finite non-relativistic
algebra was possible and following them, we call this alge¢be Galilean Conformal
Algebra, in short GCA. In the context of developing thevensof AAS/CFT for this

non-relativistic symmetry, important steps were also taike[8] and later these have



been extended in [3, 7] (for some related work, please als{ﬁ}). The development
is still under progress, however it has been realized thaigldifferent from the case of
the non-relativistic Schrodinger group. The Schrodingeug, has the advantage that,
it can be embedded in the relativistic conformal group of tigher dimensions, so
AdS/CFT in this case, can be developed on lines closer todheentional relativistic
setting, though in two higher dimensions [11]. In the casthefGalilean Conformal
Algebra, however, it seems that the dynamics in the bulklire®a degenerate limit,
which is possibly a Newton-Cartan like gravity involving AdS, factor [8]l4.

To get a better understanding, it will be useful to undeigtae pure gravity sector
first and in this sector, the gravity duals of hydrodynamiwflaibiquitously plays a
very special role, because of the conceptual clarity of tb@nstruction (for a review,
see [5]). However, even before constructing gravity dugilsjmportant, to understand
the role of thefull Galilean Conformal Algebra as symmetries of the hydrodyinam
of the boundary theory. In the originl work [8], it was showrat the Euler equation
for incompressible flows was invariant under some of the el@ms of the Galilean
Conformal Algebra. However, the hydrodynamics in any ptgisiheory, should have
a non-zero viscosity and moreover there are typically higher derivative coroexst
to all orders. Here, we will investigate how the Galilean €@omal Algebra can act
as symmetries of the Navier-Stokes equation and also isimotonstraining higher
derivative corrections.

The important point of our approach will be that we will be kareg for covariance
rather thannvariance in close analogy with the case of relativistic conformadiody-
namics where the relativistic Navier-Stokes equation &mtligher derivative correc-
tions can be made covariant (not invariant) under the xéitt conformal group [13].
An element in GCA may take a Galilean inertial frame to a noertial one. Afterco-
variantizingunder GCA, as expected, the equation will take its usual faram inertial
frame, but in a non-inertial frame it will assume a non-staddorm. In our case, the

covariantizing will involve novel features, like the abst@ (time-dependent) acceler-

1Superconformal extensions have been dealt with in [21].

2For some interesting earlier work, please look at [4].

3In fact there is a conjectured lower bound on the viscositginally due to KSS [14]. For a recent
review, please see [17].



ation and absolute (time-dependent) angular velocity efrtbn-inertial frameayhich
are not non-relativistic degenerations of the relativistovariant form. The basic rea-
son for the appearance of novel features is straightforwthedinfinite GCA has no
relativistic analogue (for a lucid description of non-telestic degenerations of rel-
ativistically covariant hydrodynamics, etc, please seég)[1Also, in non-relativistic
dynamics, the absolute acceleration or the absolute angeilacity of a non-inertial
frame are the more natural objects to be used for covariagtiather than "connec-
tions". Since our approach involves covariantizing thealidlavier-Stokes equation
for incompressible flows which holds in inertial frames,sitviery different from that
in [19H.

We will divide the Navier-Stokes equation into three pan@mely, the kinematic
term, the pressure term and the viscous term, and we will shatveach term sepa-
rately transforms covariantly, exactly like in the casenef tovariance of the relativistic
Navier-Stokes equation under the relativistic conformmalg. The kinematic term, in
an inertial frame, is just the Euler derivative acting on #edocity field. This term
transforms just like the acceleration. Since, the GCA cangiorm an inertial frame
to a non-inertial frame, as mentioned above, the covaragtiwill naturally involve
the absolute angular velocity and the absolute accelerafiohe non-inertial frame.
However, the covariance under the “spatially correlategtreparametrizations” will
be possible only if the flow is incompressﬂxleTherefore, we would require the flow
to be incompressible too.

The pressure term is just the gradient of the pressure divigethe density. We
will show that this leads to the speed of sound being GCA iavdressentially because
the pressure transforms in the same way as the density ur@@ier G

The viscous term is (p)dillij, wherep is the density andlj; is the shear stress
tensor given bylTi; = n(Vivj + Vv — (2/3)6;;V - v), with 5 being the shear viscosity.

Here the shear viscosity also transforms diela only through its dependence on the

4For some related work please also see [20].

SWhen a non-relativistic limit is taken by applying an appiafe scaling of the relativistic Navier-Stokes
equation, the incompressibility of the flow is automatigadbtained (please see the first two references
of [19]. The GCA covariant form, however, cannot be obtaiaed limit of the usual conformally covariant
relativistic Navier-Stokes equation.



thermodynamic variables which transform under GCA.

We will see that when all chemical potentials vanish (as iras @of phonons)gs,
which denotes the speed of sound in an inertial comoving thighflow, is invariant
under GCA. We will see that this implies that it must be a fundatal constant like the
speed of light or given in terms of the microscopic paransetéfe will see how each
could be possible, in particular we will see that when the benof spatial dimensions
is two, GCA admits a central charge with dimensiopgieed®. Then we will study
the transformation of viscosity under GCA and see that inabhgence of chemical
potentials the transformation could be realized only ifriieroscopic theory contains
a length scale, or a time scale, or both and if this is not péssihe viscosity should
vanish.

We also find that the GCA also has the potential to restricptissible corrections
to the Navier-Stokes equation and we explicitly evaluagepbssible three derivative
corrections. Itis intriguing that all these four possigls correspond to the relativistic
conformal case so that the relativistic terms reduce to@umg in the non-relativistic
limit in inertial frames, when the flow is incompressible.eTgeneral lesson is that a
phenomenological law can be covariantized under GCA oritg fiorm in the inertial
frame is sufficiently restricted.

The plan of the paper is as follows. In section 2, we arrive @hariant descrip-
tion of the hydrodynamics for the GCA. In section 3, we uss thicovariantize the
Navier-Stokes equation. In scetion 4, we discuss how we ogariantize the conti-
nuity equation and how it influences the transformationshefdensity, pressure and
viscosity. In section 5, we show how the GCA constrains higlexivative correc-
tions to the Navier-Stokes equations. Then we conclude swithe discussions on the
implications of our results for the version of AAS/CFT wittC& as the conformal
symmetry group. In the appendices, we elucidate some tealhpoints and in particu-
lar, we also give a simple mathematical interpretation ef@CA, that could be useful

for constructing GCA invariant microscopic theories.



2 Covariant Kinematics for the Infinite Galilean Con-
formal Algebra

The finite part of the Galilean Conformal Algebra can be ai#tdias a parametric con-
traction of theS Q(d+1, 2) relativistic conformal group off, 1) dimensional Minkowskian
space-time [2, 8]. This finite part forms a Lie group with ekathe same number of
generators as tfeQ(d + 1, 2) relativistic conformal group. The generators of thisténi
part consists of the following

0

Pi =V

Jij = =06V = xVi),

Bi =tVi,
0
D=-(x.V+ ta),

9
K=—(2tx.V + t?—
(2tx.V + 6t)’

K = tZVi .

Clearly,H is the HamiltonianP; are the momentae arj are the angular momentae
generating time translations, spatial translations aigdikan rotations respectively. The
Bi's generate the Galilean boosts. The dilation operBtarcts differently from the
Schrodinger group as it scales all spatial coordinates iamelih the same way. The
other generator& andK; can be thought of non-relativistic counterparts of relatie
special conformal transformations.

This finite algebra has an infinite extension which forms tHeEGCA, the genera-

tors of which can be labelled as below

LO = —(n+ L)t"(x.V) - t’”l%, (2)
Mi(n) — tlei,

I = 30 = AV - Vi),

where n runs over all integers. TBd(2, R) part ofL™’s belong to the finite group (as



H =LY, D = 1O, L® = K). Also, P, = M, B = M. K; = M}, while only J¥

belong to the finite group. The full algebra is

(L™, LO] = (m— )L™, (3)
[L(m)’ Jén)] — _n\];m+n)’
[Jén),‘]t()m)] — fach((;n+m),
(L™, M™] = (m— n)M™D,
[0, M = =M™ 5~ MV s50),

[M™, M) = 0.

The indexa above form an alternative label corrsponding to the spadiaktion group
S d) and fauc are the structure constants of this group. Furtlfgrs andL™’s to-
gether form a Virasoro Kac-Moody algebra. The GCA admitsubeal (dimension-
less) central charges for the Virasoro Kac-Moody subahj;abrthd\/li(”)’s can be con-
sistently put to zero [8]. Besides, these usual dimensssnieentral charges, a special
kind of central charge, is possible in the case of two spdiiakensions and it will be
important for us because only in the case of two spatial dgioers we can have a di-
mensionful central charge. A dimensionful central chawike a dimensionless one
can appear in the Lagrangian description of the theory. Aokraxample is the central
charge with dimension of mass in the Schrodinger group dgto@ing the mass of the
free particle. This central charg® appears in the commutator Mi(m)’s in the GCA
as below [7, 9]

(M, M) = 1™; 0, (4)

wherel ™ is the invariant tensor of the spin one representatiddld®, R). The central
charge® has the dimension of (kpeed?. For possible physical interpretations of
this term, please look at [7,9, 10]. Further, in the case efSkhrodinger group, as
mentioned above, there is another possible central chémgarfy number of spatial
dimensions) which has the dimension of mass (in units whegePlanck’s constant
is set to unity, mass is basically time divided by square nftk) and in fact has the
interpretation of the mass scale in the corresponding yhé&tre absence of this central
term in the GCA has been argued [6, 8] to reflect the absenceyahass scale in the



microscopic theory and we will also hold to this point of vieare.

The Jg‘)’s actually generate arbitrary time dependent rotatidnB,Mi(”)’s gener-
ate arbitrary time-dependent boosts and lthi¥s generate spatially correlated time
reparametrisations [8]. Each of these form a subalgebradiyselves. We now pro-
ceed to consider each of these categories of space-tingdrarations in detail to see
how one can have a covariant description of kinematics foh edi these categories.
Finally, we will sum up by arriving at a kinematic descriptiavhich will be covariant

under the full set of transformations.

2.1 Arbitrary time dependent rotations

These transformations are

X = Rij(t)x, (5)
t =t

whereR;; is an arbitrary time dependent rotation matrix (so tﬁﬁﬁ = R;). The

velocity transforms in the following manner,
., dRy .,
Vi = RV, — g RaX)- (6)

Now we will show that from the above transformation one catnaet a covariant time
derivative. Let us defin€;; to be the absolute angular velocity of the non-inertial
frame with respect to any inertial frame (note when the nunobepatial dimensions
is more than three this is actually a tensor, but by abuse @itioo we will still call

it absolute angular velocity, in three dimensidas = €x;jQ). Suppose the unprimed
coordinates are in the inertial frame and the primed onesah® non-inertial frame.
Then clearly the absolute angular velodity = —(de/dt)R;jl. Of course the absolute
angular velocity of a frame is very much a physical quantityt@an be determined by
an observer using that frame. The covariant time derivatinzegiven frame, can now

be defined through its action on vectors as below,

D, _d

E dtVi + QijVj, (7)



whereV is an arbitrary vector. Note that in an inertial frad¢Dt = d/dt, so if the

unprimed coordinates are inertial and primed coordinadesinertial we may rewrite

@) as,
D _miD
ot = N pr N

In fact, we may replace the position vectgiabove with any arbitrary vectdf, which

(8)

transforms likev, = R;Vj, then it also follows that

PV =RV, (9)
We now claim that the above relation is valid even when battpttimed and unprimed
coordinates are non-inertial. An easy way to prove this iksws. Let us take two
non-inertial framesx(y), t1)) and &), tz)) which are related to the inertial frame, f)
throughxay = RwjijXj, ty = tandxei = RajijXj, t) = t respectively. Obviously the
absolute angular velocities of the non-inertial frames@g; = —(dFe(l)ik/dt)R(‘ll)kj

andQ); = —(d R(z)ik/dt)lﬁzl)k J. respectively. Clearly,

D . D . D
DV = R(l)ijD_tlv(l)i = Ryjj D—tZV(Z)i- (10)
Therefore,
D D
—Viy = R —— Vi 11
b, W R TAMGIE (11)
where
Rj = RakRy» 12)

as required so that indeeghy = Rjx);. Therefore,[() is valid for any two frames,
even if both are non-inertial. In particular we will definethovariant velocity)/(°)

as the covariant derivative of the position vector so that

D d
VI = 5% = g%+ Qi (13)

By construction this transforms covariantly unddr (5),rsat t
VIO = REVIY (14)

The above tells us how to modify the acceleration so that wa gevariant vector. We

define,A™Y the “covariant accelaration” as two covariant time deniest acting on



the position vector as below,

(rot) _ D d2

2 d
i Wxi = @Xi+29ijVj+Qiijka+(d_tQij)Xj- (15)
In the non-inertial coordinates in the right hand side of ldst expression above the
corrections to the usual acceleration are just the Costioéntrifugal and Euler forces
respectiverH By construction, under the transformatiobk (5), the cavwdraccelera-
tion transforms as below,

A = REAA, (16)

where both the primed and unprimed coordinates can be restiah

We also observe that the spatial derivati%eand the symmetric traceless tensor
aij = Vivj+V;vi—(2/3)si;(V.v) transforms covariantly while divergence of the velocity
V - v transforms invariantly (in the last two cases, of courseavegalking of a velocity

field), so that under the transformatiohk (5),

Vi =R}V, (17)
— 11
aij = Ry il Oki>
V.v=V -v.

For the last two results above, we have used the factdm(t/dt)R;jl is antisymmetric
iniandj.

To summarize we see that we have two basic operators whiokfémren covari-
antly, namely the covariant time derivati@ Dt (as defined in[{7)) and the spatial
derivativeV;. Further the traceless symmetric tensgriransforms covariantly and

V - v transforms invariantly.

6Usually the relation between acceleration in inertial feaamd non-inertial frames in the case of three
spatial dimensions are written from the “passive” pointiefwas:a = a—2Qxv+Qx (Qxx)—(dQ/dt)xx,
where the primed coordinates are non-inertial and unprioregt are inertial. However, one can work out
that it is, in fact, equivalent ta=a +2Q x Vv +Q x (Q xX') + (dQ/dt ) x x. In three spatial dimensions
this is just another way of understandiig](15).

10



2.2 Arbitrary time dependent boosts

These transformations are

X = X + bi(t), (18)

t =t

We will mathematically interpret the above as the positi@etar not transforming
covariantly. It is easy to see that relative distances tivelaselocities and relative
accelerations will remain invariant under these transéiroms. So, one can easily get
a invariant acceleration field using the relative acceienatith respect to the absolute
acceleration of the frame. L& be the absolute acceleration of the non-inertial frame.

Then the invariant acceleration fiel®°®) may be defined as,

d d
ﬂi(aCCD — avi _ ﬂ(acd) — &Vi -V (B.X). (19)

This, again, can be proved as before, consider the unpriowdinates as inertial and
primed coordinates as non-inertial [n118), then from thespee point of view, the

absolute acceleration of the non-inertial frameBjs= d’b;/dt?>. So it is clearly true

that

d d
ﬂ(accl) _ _ /
LT W T dr

We can repeat the same trick of comparing two non-inerteah&s with one inertial

~Vi(8-X) = AR, (20)

frame and then comparing the two non-inertial frames wittheather, as desribed in
the previous subsection, to conclude tHf°® = AP is valid even if both the
primed and unprimed frames are non-inertial. Therefore oveeluide that(Z9) indeed
defines an invariant acceleration field.

We also observe the operat®r is invariant and so ar¥ - v and the symmetric

traceless tensat; under the transformatioh (1L8).

2.3 Spatially correlated time reparametrizations

These transformations are

. df

t = f(t).

11



The interesting thing about this transformation is thatriber frame may be using a
different time from absolute time. However, one must ask hawan observer using a
frame know that the time being used is different from absotime? To find that out,
let us first note the transformation of the velocity,
dt
Vi =V + dd%zx, (22)

dt’
The divergence of the velocity field transforms as,
/ d?t

_ r dr2
V-V_EVN +d$)2. (23)
dt’

Combining these one can easily see that one can make areintveeiocity field,

V-v
VI =y - == (24)

Firstly let us assume that when the frame is using absolue tine divergence of the
velocity field, V - v vanishes. After a generic transformation asfin (21), as shiow
(22), clearly it will no longer be zero. Therefore, if is thésnot zero, one knows that
the time being used is not using absolute time. Note the girere of the velocity field
remains zero under constant dilatation or shifts, so onéeaure of the use of absolute
time only upto a constant dilation or shift. Nol, {24) shoWatbne can construct an
invariant velocity field under space correlated time repagdrisations, which reduces
to the usual velocity field in an inertial frame (where abgeltime is used), if and only
if, the divergence of the velocity field vanishes (or the flesncompressible) in the
inertial frame. This is precisely why the assumption of incompressible flwricial
to covariantize the Navier-Stokes’ equation under the@@lA.

One can make a covariant acceleration field

d
ﬂi(SCtr) = dt(Vi(SCU), (25)
so that
dt /
ﬂi(scm = _t ﬂi(scn) . (26)

Finally one notes that the operatatstransforms covariantly and so does the trace-

12



less symmetric tensar;;;

dt _,

Vi= Vi (27)
dt

O'ij = ao'”

2.4 Summing all up

We would like to sum up all our results in order to construcbeaciant acceleration
field which will be covariant under the full GCA. We first obgerthat any element
of the GCA can be written as a succession of a time dependtatiom, a spatially
correlated time reparametrisation and a time dependergti{émr proof please see
appendix B). So without loss of generality, any element ofAG&an be written as

below:

X = TIRi(0% + b0, (28)
t = f(t).

Instead of working out what happens under the full transédiom we can, instead, use
the following logic. Let us first pubi(t) to zero so that the position vector transforms
covariantly. Then one can define a velocity field which is e@mrg under the combined

action of rotation and spatially correlated time reparaization.

V-v
Txi. (29)

VOO = v + Qijx; -
However, now the angular velocity of the frart is defined with the time of the
frame, which need not be the absolute time, for instanc&8di {f the primed coordi-
nates are non-inertial and the unprimed one is inertial therangular velocity of the
non-inertial frame i€Y; = —(de/dt')R‘;jl. One can easily see the further modification
which makes the velocity field covariant ®s v transforms invariantly under arbitrary
rotations. Anyway, using methods pointed out in the previsubsections, one can
readily check that wheh(t) = 0, under the transformatio (28), the covariant velocity
field transforms as,

VOO = Ry (30)

13



If we have a vectoW;, which transforms undelr (28) whéx(t) = 0 as
Vi =RV, (31)

then we define its covariant time derivative as

D d
otV = at

Vi + QijVj. (32)
Then wherb;(t) = 0, under the transformatiop (28) we get

D
Dt

D
Dt

dat _, ,

The above can be easily proved by our previous trick of comgpwo non-inertial
frames with an inertial one and then comparing the non4aidrames with each other
so that the above remains valid even when both the primed apdnoed frames are
non-inertial. For the sake of convenience of the reader, Wler@peat this trick ex-
plicitly for our final covariant acceleration field, which veee now in the process of
constructing. It is now clear how we should construct a davaracceleration field
whenb;(t) = 0. We must make the covariant time derivative act on the ¢awvaveloc-

ity field, so that,

— D — d C AY) ; RY
b=0 b=0 Q Q Q

Therefore, whem;(t) = 0, under the combined transformatiénl(28), the covariant ac

celeration field constructed above transform¥as (32), so that
ﬂ(b=0) _ d—t,Rii‘lﬂ(bzo)/ (35)
L T

Again it is clear how we can maintain the above covariancenvd(¢) is not zero. We
just take the relative covariant acceleration with resped, the acceleration of the
frame in the time of the frame (which may not be absolute tin@)r final covariant

acceleration field, which is covariant with respect to tHe@CA is:

_ _ D _
AL = AL - 8 = AL - V(8-x) = Z VIO - V(B %) (36)

d V.v V.v
= d—t(Vi + Qi Xj — ?XJ + Qi (V) + Qjex — ij) - Vi(8B - X).

14



The covariance, under the full GCA is simply
(comb _ dt —1 (comb’ 37
A = aRij A . (37)

To check the above, one can go back again to the represen{@8p of an arbitrary
element of GCA. Now let us suppose that the unprimed cootesrare inertial (where
the time is absolute time) so th&;, B;, V.v are all zero in these coordinates. The
covariant acceleration field is just the usual acceleratigft in these coordinates.
Now one can readily check the validity 6f{37) with the defmit(38) of the covariant

acceleration field with:

Q) = (S ROR} (38)

d? d

D? d
ez 29 g i + R Qi — (G Qb

= Wbi(t(t’)) =

B

The above relations are familiar in usual Galilean kineosatexcept for the use of a
general time’ in the non-inertial frame, which may not be the absolute tildew as
before we consider another non-inertial frame (') related to the same inertial frame
(x, 1) through the same relation{28), but with different parare®; (1), (1), b; (1))
Then again[(37) is valid with the deinition {36) of the coeat acceleration field and
with the angular velocities and acceleration of this frarve by [38), but R, bi)

’

replaced by, b;). As a result

(comb _ dt/ —1 m(comb’ _ dt” —1 4 (comb”
The above implies
Aleomy” — dt RRjLaAcomy” - dt = R ~LAcomb” 40
= gr R AT = gr (RiRi) AT (40)

The last equality above is exactly what is required for tHiglitst of (B7)) between these
two non-inertial frames and since by choice they were atjfrwe have proved that
(32) is valid for any two coordinates. However, we note thatt¢ovariant acceleration
field as defined iN{36) reduces to the usual accelerationifiedd inertial frame only
if the flow is incompressible in the inertial frame. So, we@dhatit is possible to

define a covariant acceleration field as definedid (36) whighgforms covariantly as

15



in 34) under the full GCA if and only if the flow is incompréssi(i.e.V - v = 0) in an
inertial frame (where absolute time is used).
Finally we note that the operat®f transforms covariantly under the full GCA and

so does the traceless symmetric tens@r Under the transformatiof (8)
at _ .
Vi = aRijlvj, (41)

dt ,
ij = d_ttRiT(lRﬂlO'kr
3 Covariantizing the Navier-Stokes Equation

The approach to equilibrium in physical systems is captwsdlly by three equa-
tion, namely, the continuity equation, the Navier-Stokggation and the equation for
evolution of the mean isotropic pressure. Of these threeNdwvier-Stokes equation
concerned with the approach to mechanical equilibriumestiost fundamental. The
continuity equation is valid only if the microscopic intetns conserve particle num-
ber. When the flow is incompressible, i.e when the divergeridbe velocity field
(whose take values corresponding to the local mean paxtélgcity) vanishes, the
pressure actually is not an independent dynamical varebledoes not have an inde-
pendent equation for its evolution [16].

As mentioned in the Introduction, we will dissect the Nav&tokes equation into
the kinematic term, the pressure term and the viscous terrgstablish the covariance

of each of these terms under GCA.

3.1 The Kinematic Term

The kinematic term, in an inertial frame, is simply/dt, the acceleration field. Now
the total time derivatived/dt acting on any field is simply the Euler operator =
0/0y + v.V acting on the field. Therefore the covariant form of the kiaimterm,
under the full GCA is just the covariant acceleration fi€l)(@here, we may replace
d/dtwith D

(OV)©™ = D(v; +Qij (1) — %xi)mij(t)(vj + Q) X~ %xj)—vi(B(t)-x). (42)

16



Above we have made explicit that the angular velocity an@kecation of the frame is
time dependent only. As we have proved in the previous sectiee kinematic term
transforms a4 (37) under the full GCA, so under the transftion [28), the covariant

acceleration field transforms as
dt ,
(D)™ = aa-jl(@v)i(wmb . (43)

Note the covariant kinematic terin {42) becomes the usuahkatic term in an inertial
frame, where absolute time is also used, only when the flowdgmpressible in any
inertial frame. So, it is crucial that the flow, is indeed,dngpressible, in an inertial
frame. The kinematic term can be made GCA covariant only if the flancismpress-
ible in an inertial frame so that it reduces to just the Eularidative acting on the
velocity field in an inertial frame.

We also note that since the centrifugal force is a consevétirce, one may also
write the centrifugal term like a derivative of the poteht&rm as has been done in
the case of the term involving the acceleration of the framas,it will obscure the
covariance of the kinematic term, which could be easily toieted from the logic
given in the previous section. Also, written in the fofml(4®j readily see that the
acceleration of the frame mimics the effect of an uniformvgedional field. It is
reminescent of the relativistic case where to achieve Waydidance we also promote
ordinary derivatives to covariant derivatives which alsaforms with the equivalence

principle.
3.2 The Pressure Term

The pressure term in a non-inertial frame is j€%; p)/p. We will see that the pressure
term and even the viscous term requires no modification artidypselves transform
covariantly under the full GCA.
The pressure term is
- m (44)
P

We make a natural assumption that the density transform&bgenously under GCA,

so that
dat . . ., .
p(x,t) = (a)ap (x,t), (45)
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wherea, is an undetermined constant. Therefore the pressure tesaidsremain co-
variant if the pressurg transforms in exactly the same manner as the depsiso

that

at o /.
P(x.t) = ()P (X 1). (46)
Finally one gets,
v, dt _,Vip
=P R (47)

as claimed.

3.3 The Viscous Term

The viscous term in non-inertial frame is:

_Vilgoy) Vi (n(Vivj + Vv = 365(V - v)))
P P

. (48)

We will see that this term is covariant by itself under the ®CA without any modifi-
cation. We have already seen(in(41) tfiaand the traceless symmetric tensgrboth
transform covariantly. We have already seen how the defisityshould transform in

#@39). So clearly, the viscous term transforms like the kiagaterm provided
at g
n(x, 1) = ()™ (1), (49)
With the above rule for tranformation of the viscosity we getdesired.

_ Vi) __dt L Viln o)

3.4 Summing all up
The full covariant form of the Navier-Stokes equation is:
: V- Vi— 25 (V -
(D)™ vip Y (n(Viv; + Vjvi = £6i5(V v)))’ 51
P p
or,
Vv V.v
D(Vi + Qi (O} = —=%) + Qi (V) + Q% — —57%)) — Vi(BO-X) (52)
_Vip Vi (77 (ViVj +Viv - %(ﬂj(V.V)))
p p '
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Besides, the density, pressure and viscosity transforrfuilagss,
at o
p(.1) = ()% (X, 1), (53)

p0x. 0 = (S0 (. 0),
) = (S o 1),

We will now investigate some interesting consequenceseftiove transforma-
tions. Let us first consider the case when all chemical piatisrdare zero as in a gas of
phonons in a metal. Then both the density and pressure acédns of temperature,
which must transform appropriately under GCA to reprodid&® and[(46). The speed
of soundcs in the comoving frame (i.e in the local inertial frame comayiwith the
local velocity v of the flow) is given byg2 = dp/dp. Since the pressure and density
tranform identically under GCA, we find the{ is invariant under GCA.

In a typical Galilean invariant theory this is not surprisiras for instance, for
monoatomic ideal gases, with molecular weightcs = +/(5kBT/3m). The tempera-
ture field being Galilean invariant, Galilean invariancegis automatic. The problem
is that a GCA invariant microscopic theory (as argued in {&hnot have any mass
parameter. Here, the temperature T does transform ndaHyiunder GCA, socs
must either be a fundamental constant like the speed of éigbe given in terms of
the microscopic parameters of the theory. The situatiohéssame in a relativistic
conformal system where the speed of sourgf i3, wherec is the speed of light. In a
typical non-relativistic theory there is no fundamentaeg. However, there is a novel
possibility, when the number of spatial dimensions is twae Ndve seen that, in this
case, the GCA admits a central char@ewhich has the dimension of ($peed? and
also being a central charge, this is invariant under GCA.ilsthis case, we have a
natural origin for a fundamental speed, which jsVi®]. In other dimesnions;s must
be given in terms of microscopic parameters, for instancairitbe the ratio of a mi-
croscopic length parameter and a microscopic time paraméte will have more to
say about this possibility later. In any case, for a systethauit chemical potentials,
cs must be a constant. However, if we have chemical poterital cs need not be so

and the analysis above is insufficient to make any conclusitiis case.
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4 The influence of the continuity equation

We will see here that the constamtwhich governs the transformation of density and
pressure under the full GCA can be fixed uniquely by the caityirequation. The
continuity equation is

Dp+p(V-v)=0. (54)

Let us study how this equation transforms under the full GGdy(as represented in
(28). We assume, as we did in the previous section that thsitgiefield transforms
homogenously, so that

P, t)—( )El (X, 1). (55)

With this assumption, we readlly see that

Dp+p(VV)—( )a+1(Dp +p(V V))+p( )a‘l( )( -d).  (56)

dt2
So clearly we have covariance for the continuity equatidly dna = d. Sothe conti-
nuity equation, if valid, predicts the transformation oéttiensity under GCA

We will see what consequences we now have for the NaviereStekjuation. If the
pressure term has to be covariant under GCA and transforatlgkiie the kinematic

term, we require that the pressure transforms in the sameaw#ye density, so

p(X, t)—( )dD(X t). (57)

We immediately see that the pressure transforming in the seay as the density again
makes the speed of sounga constant, when all chemical potentials vanish.

We now turn to the viscous term. Again we easily see that taesehGCA co-
variance of the viscous term, we require that the viscositygdforms under GCA as
below,

n(x.t) = ( )d 7 (X, 1) (58)

Finally, we note that if there is no particle number consgovathe continuity
equation written in the forni{34) should not hold. In thise#ise RHS must be non-
vanishing owing to say, particle absorption or emissionweher, we will still have
the same conclusions as it will be natural to demand that #8 bf this modified

equation, which will be the same as before, must be covauiaaér GCA on its own.
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5 GCA Covariance and the Viscosity

The covariance of the Navier-Stokes equation and the agitfiequation under the
full GCA requires that the viscosity should transform in atam specified manner as
given by (). Now, the viscosity can transform only throughdte- pendence on the
thermodynamic variables which are pressure and densitye,Hes before, we will

assume the absence of chemical potentials. We not@tpatoes not transform under
GCA as both the pressure and density transform exactly time seay. So the only

way, in which we can achieve the required transfor- matiotnefviscosity under the

full GCA is that it depends on the pressure and density indieviing manner,
n=ACypT, (59)
P
whereA is adimensionfumicroscopic parameter. The dimensionfofurns out to be:
1L —&2_oy
[A] = Mi(2) > (60)

In the equation aboveé\ is a (dimensionful) parameter and not a field, so it does not
transform under GCA. Itis a parameter because it is indegrgrad the thermodynamic
quantities like the pressure and density and of course iitdependent of the velocity
field as well. SoA must be given by some microscopic parameters and fundamenta
constants like the Planck’s constintHowever, as argued in [8], no microscopic theory
which is GCA invariant, can contain any mass parameter, sonss dimension of A
can come only through the Planck’s constantWithout any loss of generality, we
may also assume that we have a length skaie the theory, which by definition is a
parameter in the theory and unlike the thermal wavelendghhiiis no dependence on
the temperature or any other thermodynamic variable by itiefin Since generically
we do not have any fundamental speed like the speed of lightan-relativistic theory,

we need an independent microscopic time stakelso, which is again by definition
independent of thermodynamic variables, to soak the tirmedsion ofA. We need an
independenttime scale in the microscopic theory, becanlsssithere is a fundamental
speed or a fundamental quantity with dimension of speedamaat form a time scale

out of a length scale. Finally, without loss of generalitg @an say that should take
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the form below

d-1
A~ h% |¥l—2xtfd1+2xl (61)

Itis clear from the above equation that we cannot make therm#gnce oA on the
microscopic length scallk and the microscopic time scale vanish simultaneously.
Therefore, we conclude that we can explain the requiredtoamation of the viscosity
under the full GCA only if we have a microscopic length scal@ anicroscopic time
scale or both in our theory. We also note that even wihen 2, in which case the
central® allows to define a "fundamental speed," given¥/]0], it is impossible to
soak the dimension & with the Planck’s constant ar@@lalone. So it is impossible to
do without introducing a microscopic length scale or micagsc time scale or both.

The conclusion, therefore, is that in a GCA invariant theeither the viscosity is
zero or it contains a microscopic length parameter or a re@pic time parameter or
both. This is indeed contrary to the case of a relativisticfeomal field theory where
we cannot have any intrinsic length parameter or time pat@ma&d any quantity can
have a dimension only through the Planck’s constant andpbedsof light. At this
moment, we do not know any GCA invariant microscopic thearwe can be open to
the possibility that such theories can contain intrinsiglé or time parameters or both.
If this is not possible, then the viscosity should vanish.c@drse, as in the case with
our analysis ot , our conclusions may change if we introduce chemical patksnt

One may however, ponder if it is possible that GCA could berarsgtry of the
theory only in the presence of non-zero chemical potensialghat the above consid-
erations for the case of vanishing chemical potentials @avieided. In our opinion,
this point of view is rather unnatural, because the symmeaftry theory is usually a
fundamental property of the theory and though its manifestanight be modified,
it can neither appear or disappear at specific values of th@yrmamic intensive vari-
ables like temperature or chemical potentials. An easy pl@mhich supports this
point is the usual relativistic conformal symmetry &f = 4 SYM theory, in which
case in presence of a finite temperature we still have cordgbsgmmetry, however
the thermodynamic variables also transform under confbtrmasformations. In the

Discussion section, we will point out possible significa;moéthe analysis done here
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in the case of vanishing chemical potentials for AdS/CFTizaetion of GCA.

6 Possible GCA covariant corrections to the Navier-Stokes
Equation

The Navier-Stokes equation, being a phenomenologicalteas succeptible to
higher derivative corrections, which could be, in prineigtalculated from kinetic the-
ory. We will see that GCA is powerful in constraining thesereotions, quite like in
the case of hydrodynamics covariant under the relativigiitformal group. So, this
will give us further evidence, that GCA indeed is a creditiggical symmetry, that is
a symmetry which can constrain phenomenological laws (seabe of known GCA
invariant microscopic theories).

Usually, for instance, if calculated from the kinetic thgof gases, the corrections
to the Navier-Stokes involve corrections to the dissiagart of the stress tensay,
which at the first-order in derivatives is jugtrij. The next-order corrections to the
Navier-Stokes equation are contained in the two derivmi)mections;ri(jz), to the dis-
sipative stress tensor, so thgt= noy; +Ti(j2) and the corrected Navier-Stokes’ equation
in the inertial frame, now takes the form,

v =~ - 9,(ry) = =22 - ¥y + 7). (62)

Now, we would demand that like;;, ri(jz) contains spatial derivatives only as is indeed
that case if these corrections are calculated from kink&otty. Also, we will assume,
that these corrections involve derivatives of the velooity.

Let us first look at terms imi(jz) which have the structure o¥(1)2. For that, we need
to find if there is any other tensor with structufeuj which transforms liker;;. One
can easily see that there is only one more such tensor, wheotlenote as;; and is
defined as below

wij = %(Viu;' - Vjui — 2Q;(1)) (63)

Once again by invoking the trick of comparing one inertiahfire with two non-inertial

frames and then comparing the two non-inertial frames watthether one can readily

"The author would like to thank Rajesh Gopakumar for pointimg this significance of the constraints
imposed by GCA on the correction to the Navier-Stokes’ dqnat
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prove thatw;; transforms under full GCA likes; . Thereforeri(jz) involve the following
combinationsly ko j+A2(oikwkj+wikokj) + Aswikwkj, where the thred’s are arbitrary
transport coefficients like the shear viscosijty For the covariance of the corrected

Navier-Stokes we now require them to transform as below,
at .o
Ai(x,1) = (a) 4(x,t) (64)

wherei = 1,2, 3 andais defined through the transformation of the density as giren
@3). We can proceed to find the dependence ofithen the thermodynamic variables
exactly as we have done for the shear viscasgityowever we will not repeat it here.
Now let us look for possible correctionsfff) which contains the structur&?u).
Now sincev.V does not transform covariantly, we cannot try combinatiibeqv.V)o; .
Moreover, though the Laplaciam, transforms covariantly, we cannot use it on any
polynomial of the velocity likeuju;j, as it is not covariant. It is not, thus hard to see,
that there is only one possible covariant term which costairfy°u) term and it is
Vi(aij V=), where V=% is as defined in{29). We can still get a covariant term,
though(vl((bzo) is covariant only in absence of boosts, because the fullrvaveloc-
ity field will differ from this by a purely time-dependent quiity, so it doesn’t make
any difference when we apply the spatial derivative. We tiwag, in an inertial frame,
however, this new term is jusv.(V)oi;. We will denote the coefficient corresponding
to this term aslg.

Therefore, the most general form‘tﬁ) is:

Ti(jZ) = /loVk(O'ij(Vﬁb:O)) + A1€kej + Az(qka)kj + Wikfkj) + A3wikwj, (65)

with all A's having appropriate dependence on thermodynamic vasaul that it trans-
forms as in[(64).

Similarly, we can proceed to constrain higher order coioest of the Navier-
Stokes’ equation containing more than three derivative® dlserve that our four
possible GCA covariant corrections, have analogues indlagivistic conformal case,
as all the four possible corrections in flat space-time [6e&2]uce in the non-relativistic
limit to our four terms in an inertial frame when the flow is ampressible. This is

intriguing because the covariant forms in the two cases arg different in content.

24



It will be interesting to see if this correspondence alsateat higher orders. There
can be another term in our case involving the curvature offiaial metric as in the
relativistic case (the relativistic term involves contians of the Reimann tensor), but
since we have throughout restricted ourselves to the fldiadpaetric, this possibility

lies outside the scope of our present investigation.

7 Discussion

We have shown that the macroscopic Navier-Stokes equatiandompressible flows
has covariance under full GCA. So we can conclude that GCAbearealized as a
symmetry of a phenomenological law like the Navier-Stokgsation only if we co-
variantize the usual form of the laws which holds in inerfralmes, however not any
arbitrary law with mere Galilean covariance can be covéidad. In the case of the
Navier-Stokes equation we have needed that the flow is incessjble. We have also
seen that the higher derivative corrections to the Naviekés equation can be con-
strained by requiring GCA covariance.

Our analysis also leads us to conclude that when all chepatehtials vanishgs,
which denotes the speed of sound in a comoving frame, is dartngurther, we have
seen that in the absence of chemical potentials, the vigcsisbuld either vanish or in
the microscopic theory we must have a length scale or a tiale st both.

We would now like to discuss the possible implications of &heve analysis for
AdS/CFT realization of GCA. The presence of both length @meé scales in the GCA
invariant microscopic theory firstly tallies with the fabat we need to introduce ob-
jects like absolute angular velocity and absolute acceéteraf the non-inertial frame
which brings in dimensions of both length and time into plalis is in contrast with
the case of covariantizing under relativistic conformalugy where we need not bring
in any additional dimensionful parameter. This observegossibly indicates that we
need to first deform the action of the relativistic parenotlydike N = 4 SYM by non-
marginal operators such that a deform8d)d, 2) relativistic conformal group is the

symmetry of the theory and then take the contraction whikbs€8 Q(d, 2) relativistic
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conformal group to GCA so that we get a sensible dynamicat HmThe deformation
parameters of the symmetry being dimensionful, shouldgbirinthe required micro-
scopic length scales and time scales in the final GCA invatiegory obtained via the
contraction. Further, the deformation parameters wilb atansform non-trivially un-
der GCA so that the covariantizing will bring in new stru@srr In fact, if we take the
contraction without deformation for the classiddl= 4 SYM theory, one may read-
ily check that we get a non-dynamical equations of motionalbthe fieldsH. This
supports our point of view. In the future, we would like to findt the appropriate
operators which could give rise to the deformations suchthieacontraction produces
a sensible dynamical theory.

Finally, we mention, that it would be an interesting chadjeto construct gravita-
tional duals for GCA covariant hydrodynamic flows. Asidenfréinding the dynamics
of gravity in the bulk, we see now, we also need to find a swathblk interpretation of
the absolute angular velocity and the absolute accelerafithe boundary coordinate
system, as they are surely needed in the covariant forroalefithe hydrodynamics of
the boundary theory. Some earlier work in [4] could be uskfitis direction.
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able discussions and also for meticulously checking theusanpt. He would like to
thank Arjun Bagchi for his several suggestions on improvheymanuscript and Yo-
gesh Srivastav for useful discussions. He also thanks thgitatity of IMSc, Chennai
and CHEP, 11Sc, Bangalore where some parts of this work heea done. Finally, the

support of the people of India for research in basic scieisaeserently acknowledged.

Appendix A: A Simple Mathematical Interpretation of
the GCA

Mathematically, the infinite dimensional GCA can be motihhs follows:Consider
two particles with velocities; andv, respectively at the same point in spacand

at the same time t. Then the infinite dimensional GCA is thgektrpossible group

8A related example could be the omega-deformation [22Nof= 2 SYM theories under which the
deformed theory retains the BRST supersymmetry thougtstipersymmetry itself gets deformed by com-
bining with other supersymmetries.

9The author thanks Rajesh Gopakumar for valuable discussémarding these points.
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of space-time transformations under which the relativeeiy (v1 — v2) transforms
covariantly (as a vector under rotation) while its norm ramsinvariant. We will
now prove this statement.

Let us consider an arbitrary space-time transformatiomfa t) to (x',t). Let us

denote ) )
9%, 0%, ot ot
Mjj = —,Nj= —,Pi= —, Q= —. 66
DToax T ot axj’Q ot (66)
Then the following holds,
dX; = Mijde + N;dt, (67)
dt = Pidx + Qdt
So, we have
V/ _ MijVj + Ni 68
TP+ Q (68)

The relative velocity of two particles at the same point in@pat a given time trans-

forms as below,

(Mij v PV — Mijvie) Prviak) + Q(Mijviay — Mijvie)i) + Ni(Pvex — Peviak)

Vo —Vioy =
e (Pvay + Q)(Pmvigm + Q)
(69)
For this transformation to be covariant, we requige= 0, in which case
C o Myjvy - Mijvi);
Vi — Vo = —a (70)
If we also require the norm to remain the same, we should have,
Mij
— =R, 71
0 j (71)
where,R;j is a rotation matrix. NowP; = (8t /ox) = 0 implies that
. _df(Y)
t=10.Q=—— (72)
Then we have )
0%; df(t)
Mij = 6_)(J = QRj(x,t) = TRU(XJ)- (73)
The integrability condition requires that
aMij 6Mik
4 _ Tk 74
00X (3Xj ’ ( )
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which in turn implies that
ORj(X.t)  IRk(x,1)
00X - an ’ (75)

The above condition at a fixed valueipthe implies that the curl of a vector vanishing

so that we must have

Vi(x, 1)
(X, 1) = . 76
Rix.0 = =50 (76)
A rotation matrix satisfies the property tH?afT1 = Rji, so we should have
oV OV
— — = k. 77
an an ik ( )

The solution to the above system of equations is
Vi = Rj(t)xj+ a function of time,
so0, we hav&Rj = Rjj(t). To sum up, §x /9x;) = QM;j = (df(t)/dt)R;(t), therefore

X = %R”(t)xj +bi(t). (78)
The above together withh (¥2) belongs to our group of spaeetiansformations de-
noted by GCA.

It is also easy to check that any transformation belonginidpéoGCA makes the
relative velocity of two particles at a given point in spateaajiven time transform
covariantly while preserving its norm. So we have provedt the largest group of
spacetime transformations under which the relative velagitwo particles at the same
pointin space at a given time transforms covariantly wh#enorm is preserved, is the
GCA. This mathematical result can have physical applioatio constructing local

interactions of particles in a GCA-invariant microscogieary.

Appendix B: G = MLR

Here, we will prove that any arbitrary elemef®)(of GCA, can be written uniquely as
a succession of a time dependent rotatig)) & spatially correlated time reparametri-
sation () and a time dependent boo#f).

Let us denote the space-time coordinaies)(together aX. LetG be an arbitrary
element of the GCA and let two coordinatésnd X be related so thaX’ = G.X, i.e.

X' is the result of action o on X.

28



However, we now note that there isuaiquetime-dependent boodil such that
M.X and X" will will share the same origin of spatial coordinates at all tsn&et us
denoteM~1.X asX”. So, by constructiox” andX share the same origin of spatial
coordinatest all times

Now, if two space-time coordinates share the same origirpafial coordinates
at all times, it is also easy to see, that there ignéque spatially correlated time
reparametrisatioh which relate their times. Therefore, there isiEique Lsuch that
X" = L7L.X" andX share the same time.

By construction, we see that” and X share the same time and the same origin
of spatial coordinates. Therefore, they must be related bgiquetime-dependent
rotaionR, so thatX = R1.X".

Summing all upX = RL.X" = RIL71X" = RILIM-1X. But we assumed
X = GX, s0G = MLR, with M, L andR being unique because they were unique in
each stage of our argument above. So, we have proved thatlaitnpiy elementG)
of GCA, can be written as a succession of a time dependeritaoiR), a spatially

correlated time reparametrisatidr) @nd a time dependent boo#t).
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