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Abstract

We demonstrate that the Navier-Stokes equation can be covariantized under the
full infinite dimensional Galilean Conformal Algebra (GCA), such that it reduces
to the usual Navier-Stokes equation in an inertial frame. The covariantization is
possible only for incompressible flows, i.e when the divergence of the velocity field
vanishes. Using the continuity equation, we can fix the transformation of pressure
and density under GCA uniquely. We also find that when all chemical potentials
vanish,cs, which denotes the speed of sound in an inertial frame comoving with
the flow, must either be a fundamental constant or given in terms of microscopic
parameters. We will discuss how both could be possible. In absence of chemical
potentials, we also find that the covariance under GCA implies that either the vis-
cosity should vanish or the microscopic theory should have alength scale or a time
scale or both. We further find that the higher derivative corrections to the Navier-
Stokes equation, can be covariantized, only if they are restricted to certain possible
combinations in the inertial frame. We explicitly evaluateall possible three deriva-
tive corrections. Finally, we argue that our analysis hintsthat the parent relativistic
theory with relativistic conformal symmetry needs to be deformed before the con-
traction is taken to produce a sensible GCA invariant dynamical limit.
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1 Introduction

A new non-relativistic extension of the AdS/CFT conjecture[1] became possible when

it was shown [2, 8] that a non-relativistic conformal algebra could be obtained as a

parametric contraction of the relativistic conformal group. This contraction retained the

same number of generators as the relativistic conformal group. It was also found out

by the authors of [8] that an inifinite-dimensional extension of the finite non-relativistic

algebra was possible and following them, we call this algebra the Galilean Conformal

Algebra, in short GCA. In the context of developing theversion of AdS/CFT for this

non-relativistic symmetry, important steps were also taken in [8] and later these have
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been extended in [3,7] (for some related work, please also see [6] 1). The development

is still under progress, however it has been realized that this is different from the case of

the non-relativistic Schrodinger group. The Schrodinger group, has the advantage that,

it can be embedded in the relativistic conformal group of twohigher dimensions, so

AdS/CFT in this case, can be developed on lines closer to the conventional relativistic

setting, though in two higher dimensions [11]. In the case ofthe Galilean Conformal

Algebra, however, it seems that the dynamics in the bulk involves a degenerate limit,

which is possibly a Newton-Cartan like gravity involving anAdS2 factor [8] 2.

To get a better understanding, it will be useful to understand the pure gravity sector

first and in this sector, the gravity duals of hydrodynamic flows ubiquitously plays a

very special role, because of the conceptual clarity of their construction (for a review,

see [5]). However, even before constructing gravity duals,it is important, to understand

the role of thefull Galilean Conformal Algebra as symmetries of the hydrodynamics

of the boundary theory. In the originl work [8], it was shown that the Euler equation

for incompressible flows was invariant under some of the elements of the Galilean

Conformal Algebra. However, the hydrodynamics in any physical theory, should have

a non-zero viscosity3 and moreover there are typically higher derivative corrections

to all orders. Here, we will investigate how the Galilean Conformal Algebra can act

as symmetries of the Navier-Stokes equation and also its role in constraining higher

derivative corrections.

The important point of our approach will be that we will be looking for covariance

rather thaninvariance, in close analogy with the case of relativistic conformal hydrody-

namics where the relativistic Navier-Stokes equation and its higher derivative correc-

tions can be made covariant (not invariant) under the relativistic conformal group [13].

An element in GCA may take a Galilean inertial frame to a non-inertial one. Afterco-

variantizingunder GCA, as expected, the equation will take its usual formin an inertial

frame, but in a non-inertial frame it will assume a non-standard form. In our case, the

covariantizing will involve novel features, like the absolute (time-dependent) acceler-

1Superconformal extensions have been dealt with in [21].
2For some interesting earlier work, please look at [4].
3In fact there is a conjectured lower bound on the viscosity originally due to KSS [14]. For a recent

review, please see [17].
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ation and absolute (time-dependent) angular velocity of the non-inertial frame,which

are not non-relativistic degenerations of the relativistic covariant form.. The basic rea-

son for the appearance of novel features is straightforward, the infinite GCA has no

relativistic analogue (for a lucid description of non-relativistic degenerations of rel-

ativistically covariant hydrodynamics, etc, please see [15]). Also, in non-relativistic

dynamics, the absolute acceleration or the absolute angular velocity of a non-inertial

frame are the more natural objects to be used for covariantizing rather than "connec-

tions". Since our approach involves covariantizing the usual Navier-Stokes equation

for incompressible flows which holds in inertial frames, it is very different from that

in [19]4.

We will divide the Navier-Stokes equation into three parts,namely, the kinematic

term, the pressure term and the viscous term, and we will showthat each term sepa-

rately transforms covariantly, exactly like in the case of the covariance of the relativistic

Navier-Stokes equation under the relativistic conformal group. The kinematic term, in

an inertial frame, is just the Euler derivative acting on thevelocity field. This term

transforms just like the acceleration. Since, the GCA can transform an inertial frame

to a non-inertial frame, as mentioned above, the covariantizing will naturally involve

the absolute angular velocity and the absolute acceleration of the non-inertial frame.

However, the covariance under the “spatially correlated time reparametrizations” will

be possible only if the flow is incompressible5. Therefore, we would require the flow

to be incompressible too.

The pressure term is just the gradient of the pressure divided by the density. We

will show that this leads to the speed of sound being GCA invariant, essentially because

the pressure transforms in the same way as the density under GCA.

The viscous term is (1/ρ)∂iΠi j , whereρ is the density andΠi j is the shear stress

tensor given by,Πi j = η(∇iv j + ∇ jvi − (2/3)δi j∇ · v), with η being the shear viscosity.

Here the shear viscosity also transforms as afield only through its dependence on the

4For some related work please also see [20].
5When a non-relativistic limit is taken by applying an appropriate scaling of the relativistic Navier-Stokes

equation, the incompressibility of the flow is automatically obtained (please see the first two references
of [19]. The GCA covariant form, however, cannot be obtainedas a limit of the usual conformally covariant
relativistic Navier-Stokes equation.
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thermodynamic variables which transform under GCA.

We will see that when all chemical potentials vanish (as in a gas of phonons),cs,

which denotes the speed of sound in an inertial comoving withthe flow, is invariant

under GCA. We will see that this implies that it must be a fundamental constant like the

speed of light or given in terms of the microscopic parameters. We will see how each

could be possible, in particular we will see that when the number of spatial dimensions

is two, GCA admits a central charge with dimension (1/speed)2. Then we will study

the transformation of viscosity under GCA and see that in theabsence of chemical

potentials the transformation could be realized only if themicroscopic theory contains

a length scale, or a time scale, or both and if this is not possible, the viscosity should

vanish.

We also find that the GCA also has the potential to restrict thepossible corrections

to the Navier-Stokes equation and we explicitly evaluate the possible three derivative

corrections. It is intriguing that all these four possibilities correspond to the relativistic

conformal case so that the relativistic terms reduce to our terms in the non-relativistic

limit in inertial frames, when the flow is incompressible. The general lesson is that a

phenomenological law can be covariantized under GCA only ifits form in the inertial

frame is sufficiently restricted.

The plan of the paper is as follows. In section 2, we arrive at acovariant descrip-

tion of the hydrodynamics for the GCA. In section 3, we use this to covariantize the

Navier-Stokes equation. In scetion 4, we discuss how we can covariantize the conti-

nuity equation and how it influences the transformations of the density, pressure and

viscosity. In section 5, we show how the GCA constrains higher derivative correc-

tions to the Navier-Stokes equations. Then we conclude withsome discussions on the

implications of our results for the version of AdS/CFT with GCA as the conformal

symmetry group. In the appendices, we elucidate some technical points and in particu-

lar, we also give a simple mathematical interpretation of the GCA, that could be useful

for constructing GCA invariant microscopic theories.
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2 Covariant Kinematics for the Infinite Galilean Con-
formal Algebra

The finite part of the Galilean Conformal Algebra can be obtained as a parametric con-

traction of theS O(d+1, 2) relativistic conformal group of (d, 1) dimensional Minkowskian

space-time [2, 8]. This finite part forms a Lie group with exactly the same number of

generators as theS O(d+1, 2) relativistic conformal group. The generators of this finite

part consists of the following

H = − ∂
∂t
, (1)

Pi = ∇i,

Ji j = −(xi∇ j − x j∇i),

Bi = t∇i ,

D = −(x.∇ + t
∂

∂t
),

K = −(2tx.∇ + t2
∂

∂t
),

Ki = t2∇i .

Clearly,H is the Hamiltonian,Pi are the momentae andJi j are the angular momentae

generating time translations, spatial translations and angular rotations respectively. The

Bi ’s generate the Galilean boosts. The dilation operatorD acts differently from the

Schrodinger group as it scales all spatial coordinates and time in the same way. The

other generatorsK andKi can be thought of non-relativistic counterparts of relativistic

special conformal transformations.

This finite algebra has an infinite extension which forms the full GCA, the genera-

tors of which can be labelled as below

L(n)
= −(n+ 1)tn(x.∇) − tn+1 ∂

∂t
, (2)

M(n)
i = tn+1∇i ,

J(n)
a ≡ J(n)

i j = −tn(xi∇ j − x j∇i),

where n runs over all integers. TheS L(2,R) part ofL(n) ’s belong to the finite group (as
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H = L(−1),D = L(0), L(1)
= K). Also, Pi = M(−1)

i , Bi = M(0)
i ,Ki = M1

i , while only J(0)
i j

belong to the finite group. The full algebra is

[L(m), L(n)] = (m− n)L(m+n), (3)

[L(m), J(n)
a ] = −nJ(m+n)

a ,

[J(n)
a , J

(m)
b ] = fabcJ

(n+m)
c ,

[L(m),M(n)
i ] = (m− n)M(m+n)

i ,

[J(n)
i j ,M

(m)
k ] = −(M(m+n)

i δ jk − M(m+n)
i δ jk),

[M(m)
i ,M

(n)
j ] = 0.

The indexa above form an alternative label corrsponding to the spatialrotation group

S O(d) and fabc are the structure constants of this group. FurtherJ(n)
(a) ’s andL(m)’s to-

gether form a Virasoro Kac-Moody algebra. The GCA admits theusual (dimension-

less) central charges for the Virasoro Kac-Moody subalgebra as theM(n)
i ’s can be con-

sistently put to zero [8]. Besides, these usual dimensionless, central charges, a special

kind of central charge, is possible in the case of two spatialdimensions and it will be

important for us because only in the case of two spatial dimensions we can have a di-

mensionful central charge. A dimensionful central charge,unlike a dimensionless one

can appear in the Lagrangian description of the theory. A simple example is the central

charge with dimension of mass in the Schrodinger group actually being the mass of the

free particle. This central chargeΘ, appears in the commutator ofM(m)
i ’s in the GCA

as below [7,9]

[M(m)
i ,M

(n)
j ] = Imnǫi jΘ, (4)

whereImn is the invariant tensor of the spin one representation ofS L(2,R). The central

chargeΘ has the dimension of (1/speed)2. For possible physical interpretations of

this term, please look at [7, 9, 10]. Further, in the case of the Schrodinger group, as

mentioned above, there is another possible central charge (for any number of spatial

dimensions) which has the dimension of mass (in units where the Planck’s constant

is set to unity, mass is basically time divided by square of length) and in fact has the

interpretation of the mass scale in the corresponding theory. The absence of this central

term in the GCA has been argued [6, 8] to reflect the absence of any mass scale in the
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microscopic theory and we will also hold to this point of viewhere.

The J(n)
a ’s actually generate arbitrary time dependent rotations, the M(n)

i ’s gener-

ate arbitrary time-dependent boosts and theL(n)’s generate spatially correlated time

reparametrisations [8]. Each of these form a subalgebra by themselves. We now pro-

ceed to consider each of these categories of space-time transformations in detail to see

how one can have a covariant description of kinematics for each of these categories.

Finally, we will sum up by arriving at a kinematic description which will be covariant

under the full set of transformations.

2.1 Arbitrary time dependent rotations

These transformations are

x
′

i = Ri j (t)x j , (5)

t
′
= t,

whereRi j is an arbitrary time dependent rotation matrix (so thatR−1
i j = Rji ). The

velocity transforms in the following manner,

vi = R−1
i j (v

′

j −
dRjk

dt′
R−1

kl x
′

l ). (6)

Now we will show that from the above transformation one can extract a covariant time

derivative. Let us defineΩi j to be the absolute angular velocity of the non-inertial

frame with respect to any inertial frame (note when the number of spatial dimensions

is more than three this is actually a tensor, but by abuse of notation we will still call

it absolute angular velocity, in three dimensionsΩi j = ǫik jΩk). Suppose the unprimed

coordinates are in the inertial frame and the primed ones arein the non-inertial frame.

Then clearly the absolute angular velocityΩi j = −(dRik/dt)R−1
k j . Of course the absolute

angular velocity of a frame is very much a physical quantity as it can be determined by

an observer using that frame. The covariant time derivativein a given frame, can now

be defined through its action on vectors as below,

D
Dt

Vi =
d
dt

Vi + Ωi j V j , (7)
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whereV is an arbitrary vector. Note that in an inertial frameD/Dt = d/dt, so if the

unprimed coordinates are inertial and primed coordinates non-inertial we may rewrite

(6) as,
D
Dt

xi = R−1
i j

D
Dt′

x
′

j . (8)

In fact, we may replace the position vectorxi above with any arbitrary vectorVi which

transforms likeV
′

i = Ri j V j, then it also follows that

D
Dt

Vi = R−1
i j

D
Dt′

V
′

j . (9)

We now claim that the above relation is valid even when both the primed and unprimed

coordinates are non-inertial. An easy way to prove this is asfollows. Let us take two

non-inertial frames (x(1), t(1)) and (x(2), t(2)) which are related to the inertial frame (x, t)

throughx(1)i = R(1)i j x j , t(1) = t andx(2)i = R(2)i j x j , t(2) = t respectively. Obviously the

absolute angular velocities of the non-inertial frames areΩ(1)i j = −(dR(1)ik/dt)R−1
(1)k j

andΩ(2)i j = −(dR(2)ik/dt)R−1
(2)k j respectively. Clearly,

D
Dt

Vi = R−1
(1)i j

D
Dt1

V(1) j = R−1
(2)i j

D
Dt2

V(2) j . (10)

Therefore,
D

Dt1
V(1)i = R−1

i j
D

Dt2
V(2) j , (11)

where

Ri j = R(2)ikR−1
(1)k j, (12)

as required so that indeedx(2)i = Ri j x(1) j . Therefore, (9) is valid for any two frames,

even if both are non-inertial. In particular we will define the covariant velocityV(rot)

as the covariant derivative of the position vector so that

V(rot)
i =

D
Dt

xi =
d
dt

xi + Ωi j x j . (13)

By construction this transforms covariantly under (5), so that

V(rot)
i = R−1

i j V
(rot)′

j . (14)

The above tells us how to modify the acceleration so that we get a covariant vector. We

define,A(rot) the “covariant accelaration” as two covariant time derivatives acting on
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the position vector as below,

A(rot)
i =

D2

Dt2
xi =

d2

dt2
xi + 2Ωi jv j + Ωi jΩ jkxk + (

d
dt
Ωi j )x j . (15)

In the non-inertial coordinates in the right hand side of thelast expression above the

corrections to the usual acceleration are just the Corriolis, centrifugal and Euler forces

respectively.6 By construction, under the transformations (5), the covariant accelera-

tion transforms as below,

A(rot)
i = R−1

i j A
(rot)′

i , (16)

where both the primed and unprimed coordinates can be non-inertial.

We also observe that the spatial derivative∇i and the symmetric traceless tensor

σi j = ∇iv j+∇ jvi−(2/3)δi j(∇.v) transforms covariantly while divergence of the velocity

∇ · v transforms invariantly (in the last two cases, of course, weare talking of a velocity

field), so that under the transformations (5),

∇i = R−1
i j ∇

′

j , (17)

σi j = R−1
ik R−1

jl σ
′

kl,

∇ · v = ∇′ · v′ .

For the last two results above, we have used the fact that (dRik/dt)R−1
k j is antisymmetric

in i and j.

To summarize we see that we have two basic operators which transform covari-

antly, namely the covariant time derivativeD/Dt (as defined in (7)) and the spatial

derivative∇i . Further the traceless symmetric tensorǫi j transforms covariantly and

∇ · v transforms invariantly.

6Usually the relation between acceleration in inertial frame and non-inertial frames in the case of three
spatial dimensions are written from the “passive” point of view as:a

′
= a−2Ω×v+Ω×(Ω×x)−(dΩ/dt)×x,

where the primed coordinates are non-inertial and unprimedones are inertial. However, one can work out
that it is, in fact, equivalent toa = a

′
+ 2Ω × v

′
+Ω × (Ω × x

′
) + (dΩ/dt

′
) × x

′
. In three spatial dimensions

this is just another way of understanding (15).
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2.2 Arbitrary time dependent boosts

These transformations are

x
′

i = xi + bi(t), (18)

t
′
= t.

We will mathematically interpret the above as the position vector not transforming

covariantly. It is easy to see that relative distances, relative velocities and relative

accelerations will remain invariant under these transformations. So, one can easily get

a invariant acceleration field using the relative acceleration with respect to the absolute

acceleration of the frame. LetB be the absolute acceleration of the non-inertial frame.

Then the invariant acceleration fieldA(accl) may be defined as,

A(accl)
i =

d
dt

vi −A(accl)
=

d
dt

vi − ∇i(B.x). (19)

This, again, can be proved as before, consider the unprimed coordinates as inertial and

primed coordinates as non-inertial in (18), then from the passive point of view, the

absolute acceleration of the non-inertial frame isBi = d2bi/dt2. So it is clearly true

that

A(accl)
i =

d
dt

vi =
d

dt′
v
′

i − ∇
′

i (B · x
′
) = A(accl)′

i . (20)

We can repeat the same trick of comparing two non-inertial frames with one inertial

frame and then comparing the two non-inertial frames with each other, as desribed in

the previous subsection, to conclude thatA(accl)
i = A(accl)′

i is valid even if both the

primed and unprimed frames are non-inertial. Therefore we conclude that (19) indeed

defines an invariant acceleration field.

We also observe the operator∇i is invariant and so are∇ · v and the symmetric

traceless tensorǫi j under the transformation (18).

2.3 Spatially correlated time reparametrizations

These transformations are

x
′

i =
d f
dt

xi , (21)

t
′
= f (t).
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The interesting thing about this transformation is that thenew frame may be using a

different time from absolute time. However, one must ask howcan an observer using a

frame know that the time being used is different from absolute time? To find that out,

let us first note the transformation of the velocity,

vi = v
′

i +

d2t
dt′2

dt
dt′

x
′

i . (22)

The divergence of the velocity field transforms as,

∇ · v =
dt
′

dt
∇′ · v′ + d

d2t
dt′2

( dt
dt′

)2
. (23)

Combining these one can easily see that one can make an invariant velocity field,

V(sctr)
i = vi −

∇ · v
d

xi . (24)

Firstly let us assume that when the frame is using absolute time the divergence of the

velocity field,∇ · v vanishes. After a generic transformation as in (21), as shown in

(22), clearly it will no longer be zero. Therefore, if is thisis not zero, one knows that

the time being used is not using absolute time. Note the divergence of the velocity field

remains zero under constant dilatation or shifts, so one canbe sure of the use of absolute

time only upto a constant dilation or shift. Now, (24) shows thatone can construct an

invariant velocity field under space correlated time reparametrisations, which reduces

to the usual velocity field in an inertial frame (where absolute time is used), if and only

if, the divergence of the velocity field vanishes (or the flow is incompressible) in the

inertial frame.This is precisely why the assumption of incompressible flow is crucial

to covariantize the Navier-Stokes’ equation under the fullGCA.

One can make a covariant acceleration field

A(sctr)
i =

d
dt
V(sctr)

i , (25)

so that

A(sctr)
i =

dt
′

dt
A(sctr)′

i . (26)

Finally one notes that the operators∇i transforms covariantly and so does the trace-
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less symmetric tensorσi j ;

∇i =
dt
′

dt
∇′i , (27)

σi j =
dt
′

dt
σi j .

2.4 Summing all up

We would like to sum up all our results in order to construct a covariant acceleration

field which will be covariant under the full GCA. We first observe that any element

of the GCA can be written as a succession of a time dependent rotation, a spatially

correlated time reparametrisation and a time dependent boost (for proof please see

appendix B). So without loss of generality, any element of GCA can be written as

below:

x
′

i =
d f
dt

Ri j (t)x j + bi(t), (28)

t
′
= f (t).

Instead of working out what happens under the full transformation we can, instead, use

the following logic. Let us first putbi(t) to zero so that the position vector transforms

covariantly. Then one can define a velocity field which is covariant under the combined

action of rotation and spatially correlated time reparametrization.

V(b=0)
i = vi + Ωi j x j −

∇ · v
d

xi . (29)

However, now the angular velocity of the frameΩi j is defined with the time of the

frame, which need not be the absolute time, for instance, in (28), if the primed coordi-

nates are non-inertial and the unprimed one is inertial thenthe angular velocity of the

non-inertial frame isΩi j = −(dRik/dt
′
)R−1

k j . One can easily see the further modification

which makes the velocity field covariant as∇ · v transforms invariantly under arbitrary

rotations. Anyway, using methods pointed out in the previous subsections, one can

readily check that whenbi(t) = 0, under the transformation (28), the covariant velocity

field transforms as,

V(b=0)
i = R−1

i j V
(b=0)′

j . (30)
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If we have a vectorVi , which transforms under (28) whenbi(t) = 0 as

Vi = R−1
i j V j , (31)

then we define its covariant time derivative as

D
Dt

Vi =
d
dt

Vi + Ωi j V j . (32)

Then whenbi(t) = 0, under the transformation (28) we get

D
Dt

Vi =
dt
′

dt
R−1

i j
D

Dt′
V
′

j . (33)

The above can be easily proved by our previous trick of comapring two non-inertial

frames with an inertial one and then comparing the non-inertial frames with each other

so that the above remains valid even when both the primed and unprimed frames are

non-inertial. For the sake of convenience of the reader, we will repeat this trick ex-

plicitly for our final covariant acceleration field, which weare now in the process of

constructing. It is now clear how we should construct a covariant acceleration field

whenbi(t) = 0. We must make the covariant time derivative act on the covariant veloc-

ity field, so that,

A(b=0)
i =

D
Dt
V(b=0)

i =
d
dt

(vi + Ωi j x j −
∇.v
d

xi) + Ωi j (v j + Ω jkxk −
∇.v
d

x j). (34)

Therefore, whenbi(t) = 0, under the combined transformation (28), the covariant ac-

celeration field constructed above transforms asV in (32), so that

A(b=0)
i =

dt
′

dt
R−1

i j A
(b=0)′

j . (35)

Again it is clear how we can maintain the above covariance when bi(t) is not zero. We

just take the relative covariant acceleration with respectto B, the acceleration of the

frame in the time of the frame (which may not be absolute time). Our final covariant

acceleration field, which is covariant with respect to the full GCA is:

A(comb)
i = A(b=0)

i − Bi = A(b=0)
i − ∇i(B · x) =

D
Dt
V(b=0)

i − ∇i(B · x) (36)

=
d
dt

(vi + Ωi j x j −
∇.v
d

xi) + Ωi j (v j + Ω jkxk −
∇.v
d

x j) − ∇i(B · x).
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The covariance, under the full GCA is simply

A(comb)
i =

dt
′

dt
R−1

i j A
(comb)′

j . (37)

To check the above, one can go back again to the representation (28) of an arbitrary

element of GCA. Now let us suppose that the unprimed coordinates are inertial (where

the time is absolute time) so thatΩi j ,Bi ,∇.v are all zero in these coordinates. The

covariant acceleration field is just the usual accelerationdv/dt in these coordinates.

Now one can readily check the validity of (37) with the definition (36) of the covariant

acceleration field with:

Ωi j = −(
d
dt′

Rik)R−1
k j (38)

Bi =
D2

Dt′2
bi(t(t

′
)) =

d2

dt′2
bi − 2Ωi j

d
dt′

b j + Ωi jΩ jkbk − (
d
dt′
Ωi j )b j

The above relations are familiar in usual Galilean kinematics, except for the use of a

general timet
′
in the non-inertial frame, which may not be the absolute time. Now as

before we consider another non-inertial frame (x
′′
, t
′′
) related to the same inertial frame

(x, t) through the same relation (28), but with different parameters (R
′

i j (t), f
′
(t), b

′

i (t)).

Then again (37) is valid with the deinition (36) of the covariant acceleration field and

with the angular velocities and acceleration of this frame given by (38), but (Ri j , bi)

replaced by (R
′

i j , b
′

i ). As a result

A(comb)
i =

dt
′

dt
R−1

i j A
(comb)′

j =
dt
′′

dt
R
′−1
i j A

(comb)′′

j . (39)

The above implies

A(comb)′

j =
dt
′′

dt′
Ri jR

′−1
jk A

(comb)′′

k =
dt
′′

dt′
(R
′

i j R
−1
jk )−1A(comb)′′

k . (40)

The last equality above is exactly what is required for the validity of (37) between these

two non-inertial frames and since by choice they were arbitrary, we have proved that

(37) is valid for any two coordinates. However, we note that the covariant acceleration

field as defined in (36) reduces to the usual acceleration fieldin an inertial frame only

if the flow is incompressible in the inertial frame. So, we prove thatit is possible to

define a covariant acceleration field as defined in (36) which transforms covariantly as
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in (37) under the full GCA if and only if the flow is incompressible (i.e.∇ · v = 0) in an

inertial frame (where absolute time is used).

Finally we note that the operator∇i transforms covariantly under the full GCA and

so does the traceless symmetric tensorσi j . Under the transformation (28)

∇i =
dt
′

dt
R−1

i j ∇
′

j , (41)

σi j =
dt
′

dt
R−1

ik R−1
jl σ

′

kl.

3 Covariantizing the Navier-Stokes Equation

The approach to equilibrium in physical systems is capturedusually by three equa-

tion, namely, the continuity equation, the Navier-Stokes equation and the equation for

evolution of the mean isotropic pressure. Of these three, the Navier-Stokes equation

concerned with the approach to mechanical equilibrium is the most fundamental. The

continuity equation is valid only if the microscopic interactions conserve particle num-

ber. When the flow is incompressible, i.e when the divergenceof the velocity field

(whose take values corresponding to the local mean particlevelocity) vanishes, the

pressure actually is not an independent dynamical variableas it does not have an inde-

pendent equation for its evolution [16].

As mentioned in the Introduction, we will dissect the Navier-Stokes equation into

the kinematic term, the pressure term and the viscous term, and establish the covariance

of each of these terms under GCA.

3.1 The Kinematic Term

The kinematic term, in an inertial frame, is simplydv/dt, the acceleration field. Now

the total time derivatived/dt acting on any field is simply the Euler operatorD =

∂/∂t + v.∇ acting on the field. Therefore the covariant form of the kinematic term,

under the full GCA is just the covariant acceleration field (36) where, we may replace

d/dt with D

(Dv)(comb)
i = D(vi +Ωi j (t)x j−

∇.v
d

xi)+Ωi j (t)(v j+Ω jk(t)xk−
∇.v
d

x j)−∇i(B(t) ·x). (42)

16



Above we have made explicit that the angular velocity and acceleration of the frame is

time dependent only. As we have proved in the previous section, the kinematic term

transforms as (37) under the full GCA, so under the transformation (28), the covariant

acceleration field transforms as

(Dv)(comb)
i =

dt
′

dt
R−1

i j (Dv)(comb)′

i . (43)

Note the covariant kinematic term (42) becomes the usual kinematic term in an inertial

frame, where absolute time is also used, only when the flow is incompressible in any

inertial frame. So, it is crucial that the flow, is indeed, incompressible, in an inertial

frame.The kinematic term can be made GCA covariant only if the flow isincompress-

ible in an inertial frame so that it reduces to just the Euler derivative acting on the

velocity field in an inertial frame.

We also note that since the centrifugal force is a conservative force, one may also

write the centrifugal term like a derivative of the potential term as has been done in

the case of the term involving the acceleration of the frame,but it will obscure the

covariance of the kinematic term, which could be easily constructed from the logic

given in the previous section. Also, written in the form (42), we readily see that the

acceleration of the frame mimics the effect of an uniform gravitational field. It is

reminescent of the relativistic case where to achieve Weyl covariance we also promote

ordinary derivatives to covariant derivatives which also conforms with the equivalence

principle.

3.2 The Pressure Term

The pressure term in a non-inertial frame is just−(∇i p)/ρ. We will see that the pressure

term and even the viscous term requires no modification and bythemselves transform

covariantly under the full GCA.

The pressure term is

− ∇i p
ρ
. (44)

We make a natural assumption that the density transforms homogenously under GCA,

so that

ρ(x, t) = (
dt
′

dt
)aρ

′
(x
′
, t
′
), (45)
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wherea, is an undetermined constant. Therefore the pressure term should remain co-

variant if the pressurep transforms in exactly the same manner as the densityρ, so

that

p(x, t) = (
dt
′

dt
)ap

′
(x
′
, t
′
). (46)

Finally one gets,

−
∇i p
ρ
= −

dt
′

dt
R−1

i j

∇′i p
′

ρ
′ , (47)

as claimed.

3.3 The Viscous Term

The viscous term in non-inertial frame is:

−
∇i(ησi j )

ρ
= −
∇i

(

η
(

∇iv j + ∇ jvi − 2
3δi j (∇ · v)

))

ρ
. (48)

We will see that this term is covariant by itself under the full GCA without any modifi-

cation. We have already seen in (41) that∇i and the traceless symmetric tensorσi j both

transform covariantly. We have already seen how the densityfield should transform in

(45). So clearly, the viscous term transforms like the kinematic term provided

η(x, t) = (
dt
′

dt
)a−1η

′
(x
′
, t
′
). (49)

With the above rule for tranformation of the viscosity we getas desired.

−
∇i(ησi j )

ρ
= −

dt
′

dt
R−1

jl

∇′k(η
′
σ
′

kl)

ρ
′ . (50)

3.4 Summing all up

The full covariant form of the Navier-Stokes equation is:

(Dv)(comb)
i = −∇i p

ρ
−
∇ j

(

η
(

∇iv j + ∇ jvi − 2
3δi j (∇ · v)

))

ρ
, (51)

or,

D(vi + Ωi j (t)x j −
∇.v
d

xi) + Ωi j (t)(v j + Ω jk(t)xk −
∇.v
d

x j) − ∇i(B(t).x) (52)

= −
∇i p
ρ
−
∇ j

(

η
(

∇iv j + ∇ jvi − 2
3δi j (∇.v)

))

ρ
.
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Besides, the density, pressure and viscosity transforms asfollows,

ρ(x, t) = (
dt
′

dt
)aρ

′
(x
′
, t
′
), (53)

p(x, t) = (
dt
′

dt
)ap

′
(x
′
, t
′
),

η(x, t) = (
dt
′

dt
)a−1η

′
(x
′
, t
′
).

We will now investigate some interesting consequences of the above transforma-

tions. Let us first consider the case when all chemical potentials are zero as in a gas of

phonons in a metal. Then both the density and pressure are functions of temperature,

which must transform appropriately under GCA to reproduce (45) and (46). The speed

of soundcs in the comoving frame (i.e in the local inertial frame comoving with the

local velocity v of the flow) is given byc2
s = dp/dρ. Since the pressure and density

tranform identically under GCA, we find thatcs is invariant under GCA.

In a typical Galilean invariant theory this is not surprising, as for instance, for

monoatomic ideal gases, with molecular weightm, cs =
√

(5kBT/3m). The tempera-

ture field being Galilean invariant, Galilean invariance ofcs is automatic. The problem

is that a GCA invariant microscopic theory (as argued in [8])cannot have any mass

parameter. Here, the temperature T does transform non-trivially under GCA, socs

must either be a fundamental constant like the speed of lightor be given in terms of

the microscopic parameters of the theory. The situation is the same in a relativistic

conformal system where the speed of sound isc/
√

3, wherec is the speed of light. In a

typical non-relativistic theory there is no fundamental speed. However, there is a novel

possibility, when the number of spatial dimensions is two. We have seen that, in this

case, the GCA admits a central charge,Θ, which has the dimension of (1/speed)2 and

also being a central charge, this is invariant under GCA. So,in this case, we have a

natural origin for a fundamental speed, which is 1/
√
|Θ|. In other dimesnions,cs must

be given in terms of microscopic parameters, for instance itcan be the ratio of a mi-

croscopic length parameter and a microscopic time parameter. We will have more to

say about this possibility later. In any case, for a system without chemical potentials,

cs must be a constant. However, if we have chemical potentials too, cs need not be so

and the analysis above is insufficient to make any conclusionin this case.
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4 The influence of the continuity equation

We will see here that the constanta, which governs the transformation of density and

pressure under the full GCA can be fixed uniquely by the continuity equation. The

continuity equation is

Dρ + ρ(∇ · v) = 0. (54)

Let us study how this equation transforms under the full GCA (say as represented in

(28). We assume, as we did in the previous section that the density field transforms

homogenously, so that

ρ(x, t) = (
dt
′

dt
)aρ

′
(x
′
, t
′
). (55)

With this assumption, we readily see that

Dρ + ρ(∇.v) = (
dt
′

dt
)a+1(D′ρ′ + ρ′ (∇′ .v′)) + ρ′ (dt

′

dt
)a−1(

d2t
′

dt2
)(a− d). (56)

So clearly we have covariance for the continuity equation only if a = d. So the conti-

nuity equation, if valid, predicts the transformation of the density under GCA.

We will see what consequences we now have for the Navier-Stokes’ equation. If the

pressure term has to be covariant under GCA and transform exactly like the kinematic

term, we require that the pressure transforms in the same wayas the density, so

p(x, t) = (
dt
′

dt
)dp

′
(x
′
, t
′
). (57)

We immediately see that the pressure transforming in the same way as the density again

makes the speed of soundcs a constant, when all chemical potentials vanish.

We now turn to the viscous term. Again we easily see that to achieve GCA co-

variance of the viscous term, we require that the viscosity transforms under GCA as

below,

η(x, t) = (
dt
′

dt
)d−1η

′
(x
′
, t
′
). (58)

Finally, we note that if there is no particle number conservation the continuity

equation written in the form (54) should not hold. In this case the RHS must be non-

vanishing owing to say, particle absorption or emission. However, we will still have

the same conclusions as it will be natural to demand that the LHS of this modified

equation, which will be the same as before, must be covariantunder GCA on its own.
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5 GCA Covariance and the Viscosity

The covariance of the Navier-Stokes equation and the continuity equation under the

full GCA requires that the viscosity should transform in a certain specified manner as

given by (). Now, the viscosity can transform only through its de- pendence on the

thermodynamic variables which are pressure and density. Here, as before, we will

assume the absence of chemical potentials. We note thatp/ρ does not transform under

GCA as both the pressure and density transform exactly the same way. So the only

way, in which we can achieve the required transfor- mation ofthe viscosity under the

full GCA is that it depends on the pressure and density in the following manner,

η = A(
p
ρ

)xp
d−1

d , (59)

whereA is adimensionfulmicroscopic parameter. The dimension ofA turns out to be:

[A] = M
1
d (

L
T

)−
d−2

d −2x. (60)

In the equation above,A is a (dimensionful) parameter and not a field, so it does not

transform under GCA. It is a parameter because it is independent of the thermodynamic

quantities like the pressure and density and of course it is independent of the velocity

field as well. So,A must be given by some microscopic parameters and fundamental

constants like the Planck’s constanth. However, as argued in [8], no microscopic theory

which is GCA invariant, can contain any mass parameter, so the mass dimension of A

can come only through the Planck’s constanth. Without any loss of generality, we

may also assume that we have a length scalel f in the theory, which by definition is a

parameter in the theory and unlike the thermal wavelength this has no dependence on

the temperature or any other thermodynamic variable by definition. Since generically

we do not have any fundamental speed like the speed of light ina non-relativistic theory,

we need an independent microscopic time scalet f also, which is again by definition

independent of thermodynamic variables, to soak the time dimension ofA. We need an

independent time scale in the microscopic theory, because unless there is a fundamental

speed or a fundamental quantity with dimension of speed, we cannot form a time scale

out of a length scale. Finally, without loss of generality, we can say thatA should take
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the form below

A ≈ h
1
d l−1−2x

f t
d−1

d +2x
f . (61)

It is clear from the above equation that we cannot make the dependence ofA on the

microscopic length scalel f and the microscopic time scalet f vanish simultaneously.

Therefore, we conclude that we can explain the required transformation of the viscosity

under the full GCA only if we have a microscopic length scale or a microscopic time

scale or both in our theory. We also note that even whend = 2, in which case the

centralΘ allows to define a "fundamental speed," given by
√

1/|Θ|, it is impossible to

soak the dimension ofA with the Planck’s constant andΘ alone. So it is impossible to

do without introducing a microscopic length scale or microscopic time scale or both.

The conclusion, therefore, is that in a GCA invariant theory, either the viscosity is

zero or it contains a microscopic length parameter or a microscopic time parameter or

both. This is indeed contrary to the case of a relativistic conformal field theory where

we cannot have any intrinsic length parameter or time parameter and any quantity can

have a dimension only through the Planck’s constant and the speed of light. At this

moment, we do not know any GCA invariant microscopic theory so we can be open to

the possibility that such theories can contain intrinsic length or time parameters or both.

If this is not possible, then the viscosity should vanish. Ofcourse, as in the case with

our analysis ofcs , our conclusions may change if we introduce chemical potentials.

One may however, ponder if it is possible that GCA could be a symmetry of the

theory only in the presence of non-zero chemical potentialsso that the above consid-

erations for the case of vanishing chemical potentials can be avoided. In our opinion,

this point of view is rather unnatural, because the symmetryof a theory is usually a

fundamental property of the theory and though its manifestation might be modified,

it can neither appear or disappear at specific values of thermodynamic intensive vari-

ables like temperature or chemical potentials. An easy example which supports this

point is the usual relativistic conformal symmetry ofN = 4 SYM theory, in which

case in presence of a finite temperature we still have conformal symmetry, however

the thermodynamic variables also transform under conformal transformations. In the

Discussion section, we will point out possible significances of the analysis done here
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in the case of vanishing chemical potentials for AdS/CFT realization of GCA.

6 Possible GCA covariant corrections to the Navier-Stokes
Equation

The Navier-Stokes equation, being a phenomenological equation, is succeptible to

higher derivative corrections, which could be, in principle, calculated from kinetic the-

ory. We will see that GCA is powerful in constraining these corrections, quite like in

the case of hydrodynamics covariant under the relativisticconformal group. So, this

will give us further evidence, that GCA indeed is a credible physical symmetry, that is

a symmetry which can constrain phenomenological laws (in absence of known GCA

invariant microscopic theories).7

Usually, for instance, if calculated from the kinetic theory of gases, the corrections

to the Navier-Stokes involve corrections to the dissipative part of the stress tensorτi j ,

which at the first-order in derivatives is justησi j . The next-order corrections to the

Navier-Stokes equation are contained in the two derivativecorrections,τ(2)
i j , to the dis-

sipative stress tensor, so thatτi j = ησi j +τ
(2)
i j and the corrected Navier-Stokes’ equation

in the inertial frame, now takes the form,

Dvi = −
∇i p
ρ
− ∇i(τi j ) = −

∇i p
ρ
− ∇i(ησi j + τ

(2)
i j ). (62)

Now, we would demand that likeσi j , τ
(2)
i j contains spatial derivatives only as is indeed

that case if these corrections are calculated from kinetic theory. Also, we will assume,

that these corrections involve derivatives of the velocityonly.

Let us first look at terms inτ(2)
i j which have the structure of (∇u)2. For that, we need

to find if there is any other tensor with structure (∇u) which transforms likeσi j . One

can easily see that there is only one more such tensor, which we denote asωi j and is

defined as below

ωi j =
1
2

(∇iu j − ∇ jui − 2Ωi j (t)) (63)

Once again by invoking the trick of comparing one inertial frame with two non-inertial

frames and then comparing the two non-inertial frames with each other one can readily

7The author would like to thank Rajesh Gopakumar for pointingout this significance of the constraints
imposed by GCA on the correction to the Navier-Stokes’ equation.
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prove thatωi j transforms under full GCA likeσi j . Thereforeτ(2)
i j involve the following

combinationsλ1σikσk j+λ2(σikωk j+ωikσk j)+λ3ωikωk j, where the threeλ’s are arbitrary

transport coefficients like the shear viscosityη. For the covariance of the corrected

Navier-Stokes we now require them to transform as below,

λi(x, t) = (
dt
′

dt
)a−2λ

′

i (x
′
, t
′
) (64)

wherei = 1, 2, 3 anda is defined through the transformation of the density as givenin

(45). We can proceed to find the dependence of theλ’s on the thermodynamic variables

exactly as we have done for the shear viscosityη, however we will not repeat it here.

Now let us look for possible corrections toτ(2)
i j which contains the structure (∇2u).

Now sincev.∇ does not transform covariantly, we cannot try combinationslike (v.∇)σi j .

Moreover, though the Laplacian,�, transforms covariantly, we cannot use it on any

polynomial of the velocity likeuiu j , as it is not covariant. It is not, thus hard to see,

that there is only one possible covariant term which contains a (∇2u) term and it is

∇k(σi jV(b=0)
k ), whereV(b=0)

k is as defined in (29). We can still get a covariant term,

thoughV(b=0)
k is covariant only in absence of boosts, because the full covariant veloc-

ity field will differ from this by a purely time-dependent quantity, so it doesn’t make

any difference when we apply the spatial derivative. We notethat, in an inertial frame,

however, this new term is just (v.∇)σi j . We will denote the coefficient corresponding

to this term asλ0.

Therefore, the most general form ofτ(2)
i j is:

τ
(2)
i j = λ0∇k(σi jV(b=0)

k ) + λ1ǫikǫk j + λ2(ǫikωk j + ωikǫk j) + λ3ωikωk j, (65)

with all λ’s having appropriate dependence on thermodynamic variables so that it trans-

forms as in (64).

Similarly, we can proceed to constrain higher order corrections of the Navier-

Stokes’ equation containing more than three derivatives. We observe that our four

possible GCA covariant corrections, have analogues in the relativistic conformal case,

as all the four possible corrections in flat space-time [12],reduce in the non-relativistic

limit to our four terms in an inertial frame when the flow is incompressible. This is

intriguing because the covariant forms in the two cases are very different in content.
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It will be interesting to see if this correspondence also exist at higher orders. There

can be another term in our case involving the curvature of thespatial metric as in the

relativistic case (the relativistic term involves contractions of the Reimann tensor), but

since we have throughout restricted ourselves to the flat spatial metric, this possibility

lies outside the scope of our present investigation.

7 Discussion

We have shown that the macroscopic Navier-Stokes equation for incompressible flows

has covariance under full GCA. So we can conclude that GCA canbe realized as a

symmetry of a phenomenological law like the Navier-Stokes equation only if we co-

variantize the usual form of the laws which holds in inertialframes, however not any

arbitrary law with mere Galilean covariance can be covariantized. In the case of the

Navier-Stokes equation we have needed that the flow is incompressible. We have also

seen that the higher derivative corrections to the Navier-Stokes equation can be con-

strained by requiring GCA covariance.

Our analysis also leads us to conclude that when all chemicalpotentials vanish,cs,

which denotes the speed of sound in a comoving frame, is a constant. Further, we have

seen that in the absence of chemical potentials, the viscosity should either vanish or in

the microscopic theory we must have a length scale or a time scale or both.

We would now like to discuss the possible implications of theabove analysis for

AdS/CFT realization of GCA. The presence of both length and time scales in the GCA

invariant microscopic theory firstly tallies with the fact that we need to introduce ob-

jects like absolute angular velocity and absolute acceleration of the non-inertial frame

which brings in dimensions of both length and time into play.This is in contrast with

the case of covariantizing under relativistic conformal group where we need not bring

in any additional dimensionful parameter. This observation possibly indicates that we

need to first deform the action of the relativistic parent theory likeN = 4 SYM bynon-

marginaloperators such that a deformedS O(d, 2) relativistic conformal group is the

symmetry of the theory and then take the contraction which takesS O(d, 2) relativistic
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conformal group to GCA so that we get a sensible dynamical limit 8. The deformation

parameters of the symmetry being dimensionful, should bring in the required micro-

scopic length scales and time scales in the final GCA invariant theory obtained via the

contraction. Further, the deformation parameters will also transform non-trivially un-

der GCA so that the covariantizing will bring in new structures. In fact, if we take the

contraction without deformation for the classicalN = 4 SYM theory, one may read-

ily check that we get a non-dynamical equations of motion forall the fields9. This

supports our point of view. In the future, we would like to findout the appropriate

operators which could give rise to the deformations such that the contraction produces

a sensible dynamical theory.

Finally, we mention, that it would be an interesting challenge to construct gravita-

tional duals for GCA covariant hydrodynamic flows. Aside from finding the dynamics

of gravity in the bulk, we see now, we also need to find a suitable bulk interpretation of

the absolute angular velocity and the absolute acceleration of the boundary coordinate

system, as they are surely needed in the covariant formulation of the hydrodynamics of

the boundary theory. Some earlier work in [4] could be usefulin this direction.
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Appendix A: A Simple Mathematical Interpretation of
the GCA

Mathematically, the infinite dimensional GCA can be motivated as follows:Consider

two particles with velocitiesv1 andv2 respectively at the same point in spacex and

at the same time t. Then the infinite dimensional GCA is the largest possible group

8A related example could be the omega-deformation [22] ofN = 2 SYM theories under which the
deformed theory retains the BRST supersymmetry though thissupersymmetry itself gets deformed by com-
bining with other supersymmetries.

9The author thanks Rajesh Gopakumar for valuable discussions regarding these points.

26



of space-time transformations under which the relative velocity (v1 − v2) transforms

covariantly (as a vector under rotation) while its norm remains invariant.. We will

now prove this statement.

Let us consider an arbitrary space-time transformation from (x, t) to (x
′
, t
′
). Let us

denote

Mi j =
∂x

′

i

∂x j
,Ni =

∂x
′

i

∂t
,Pi =

∂t
′

∂x j
,Q =

∂t
′

∂t
. (66)

Then the following holds,

dx
′

i = Mi j dxj + Nidt, (67)

dt
′
= Pidxi + Qdt.

So, we have

v
′

i =
Mi j v j + Ni

Pkvk + Q
. (68)

The relative velocity of two particles at the same point in space at a given time trans-

forms as below,

v
′

(1)i−v
′

(2)i =
(Mi j v(1) j Pkv(2)k − Mi j v(2) jPkv(1)k) + Q(Mi j v(1) j − Mi j v(2) j) + Ni(Pkv(2)k − Pkv(1)k)

(Plv(1)l + Q)(Pmv(2)m + Q)
.

(69)

For this transformation to be covariant, we requirePk = 0, in which case

v
′

(1)i − v
′

(2)i =
Mi j v(1) j − Mi j v(2) j

Q
. (70)

If we also require the norm to remain the same, we should have,

Mi j

Q
= Ri j , (71)

where,Ri j is a rotation matrix. Now,Pi = (∂t
′
/∂xi) = 0 implies that

t
′
= f (t),Q =

d f(t)
dt
. (72)

Then we have

Mi j =
∂x

′

i

∂x j
= QRi j (x, t) =

d f(t)
dt

Ri j (x, t). (73)

The integrability condition requires that

∂Mi j

∂xk
=
∂Mik

∂x j
, (74)
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which in turn implies that
∂Ri j (x, t)
∂xk

=
∂Rik(x, t)
∂x j

. (75)

The above condition at a fixed value ofi, the implies that the curl of a vector vanishing

so that we must have

Ri j (x, t) =
∂Vi(x, t)
∂x j

. (76)

A rotation matrix satisfies the property thatR−1
i j = Rji , so we should have

∂Vi

∂x j

∂Vk

∂x j
= δik. (77)

The solution to the above system of equations is

Vi = Ri j (t)x j+ a function of time,

so, we haveRi j = Ri j (t). To sum up, (∂x
′

i/∂x j) = QMi j = (d f(t)/dt)Ri j (t), therefore

x
′

i =
d f(t)

dt
Ri j (t)x j + bi(t). (78)

The above together with (72) belongs to our group of spacetime transformations de-

noted by GCA.

It is also easy to check that any transformation belonging tothe GCA makes the

relative velocity of two particles at a given point in space at a given time transform

covariantly while preserving its norm. So we have proved, that the largest group of

spacetime transformations under which the relative velocity of two particles at the same

point in space at a given time transforms covariantly while its norm is preserved, is the

GCA. This mathematical result can have physical applications in constructing local

interactions of particles in a GCA-invariant microscopic theory.

Appendix B: G = MLR

Here, we will prove that any arbitrary element (G) of GCA, can be written uniquely as

a succession of a time dependent rotation (R), a spatially correlated time reparametri-

sation (L) and a time dependent boost (M).

Let us denote the space-time coordinates (x, t) together asX. Let G be an arbitrary

element of the GCA and let two coordinatesX andX
′
be related so thatX

′
= G.X, i.e.

X
′
is the result of action ofG on X.
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However, we now note that there is auniquetime-dependent boostM such that

M.X andX
′
will will share the same origin of spatial coordinates at all times. Let us

denoteM−1.X
′

asX
′′
. So, by constructionX

′′
andX share the same origin of spatial

coordinatesat all times.

Now, if two space-time coordinates share the same origin of spatial coordinates

at all times, it is also easy to see, that there is auniquespatially correlated time

reparametrisationL which relate their times. Therefore, there is aunique Lsuch that

X
′′′
= L−1.X

′′
andX share the same time.

By construction, we see thatX
′′′

andX share the same time and the same origin

of spatial coordinates. Therefore, they must be related by auniquetime-dependent

rotaionR, so thatX = R−1.X
′′′

.

Summing all up,X = R−1.X
′′′
= R−1L−1X

′′
= R−1L−1M−1X

′
. But we assumed

X = GX
′
, soG = MLR, with M, L andR being unique because they were unique in

each stage of our argument above. So, we have proved that any arbitrary element (G)

of GCA, can be written as a succession of a time dependent rotation (R), a spatially

correlated time reparametrisation (L) and a time dependent boost (M).
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